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Preface 

These proceedings contain the texts of 37 contributions presented at the International Conference 

on Engineering Optimization in an Industrial Environment, which took place on 3 - 4 September 

1990 at the Karlsruhe Nuclear Hesearch Center, I~H Germany. 

The presentations consisted of oral and poster contributions arranged in five sessions: 

• Shape and layout optimization 

• Structural optimization with advanced materials 

• Optimal designs with special structural and material beha viour 

• Sensitivity analysis - Programme systems 

• Optimization with stability constraints - Special problems 

The editors wish to express their appreciation to all authors and invited speakers for their in

teresting contributions. 

The proceedings cover a wide range of topics in structural optimization representing the present 

state of the art in the fields of research and in the industrial environment as well. The editors hope 

that this book will also contribute towards new ideas and concepts in a world of ever decreasing 

natural resources and ever increasing demands for lighter and yet stronger and safer technical 

components. 

I"inally, the editors wish to thank all colleagues who helped in the organisation of the conference, 

especially Mrs. E. Schroder anq Dr. K.llethge, as well as Mr. A. von lIagen and Mrs. E. Haufelder, 

Springer Publishing Company, Heidelberg for the good cooperation and help in the publication of 

these proceedings. 

H. Eschenauer 

Siegen 

C. Mattheck 

Karlsruhe 

December 1990 

N.Olhoff 

Aalborg 
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Abstract: After being able to determine the structural behaviour by means or finite methods. an 
important goal or engineering activities is to improve and to optimize technical designs. structural 
components and structural assemblies. The task or structural optimization is to support the 
engineer in searching ror the best possible design alternatives or specific structures. The "best 
possible" or "optimal" structure is the structure which is highly corresponding to the designer' s 
desired concept whilst at the same time meeting the runctional. manuracturing and application. 
e.g. all multidisciplinary requirements. In comparison to the "trial and error"- method generally 
used in the engineering environment and based on intuitive heuristic approach. the determination 
or optimal solutions by applying mathematical optimization procedures is more reliable and erfi
cient ir correctly applied. These procedures will be a need in the design process and they are 
already increasingly entering the industrial practice. 

I. INTRODUCTION 

The recent rapid development of the so-called "new" or "High Technologies" 
(Computer Technology, Material Sciences, Robotics, etc.) suggests to pause and 
to contemplate the question whether the worldwide activities of scientists do corres
pond to what great scholars in the 16th and 17th century thought about already. 
On the GAMM-Conference 1990 in Hannover, an exhibition was devoted to the 
philosopher, mathematician, physicist, technician and author GOTTFRIED WILHELM 
LEIBNIZ (1646 - 1716) as one of the last universal scholars of Modern Times (Fig. 1 
[1]). His merits especially in the fields of mathematics, natural and engineering 
sciences can be viewed as the foundation of multidisciplinary, analytical or, in other 
words, coherent thinking. We should remember that Leibniz built the first calcu
lator with a stepped drum; achievements which nowadays make optimization com
putations possible on a larger scale. Apart from that, Leibniz gave impetus to 
many areas of engineering sciences. Of special importance in this respect are his 
connection of "theoria cum praxii" and his inventions like the drive units for wind 
and water art-works. 
The principles of mechanics allow the formulation of classical problems of natural 
and engineering sciences by means of the calculus of variation. LEIBNIZ and 
L. EULER (1707-1783) established the required mathematical tool for finding the 
extreme values of given functions by introdUcing the infinitesimal calculus. Here
with, it is possible to carry out an integrated and modern treatment of energy 
principles in all fields of mechanics with application to dynamics of rigid bodies, 
general elasticity theory, analysis of supporting structures (frames, trusses, plates, 
shells), the theory of buckling, the theory of vibrations, etc. Some very interesting 
examples, among others the "curve of the shortest falling time" ("brachistochrone") 
and the isoperimetric problem, were investigated by JACOB BERNOULLI (1655-1705) 
and DANIEL BERNOULLI (1700-1782). A further task was solved by I. NEWTON 



www.manaraa.com

2 

Fig. 1: 
Gottfried Wilhelm 
Leibniz (1646 - 1716) 

(1643-1727), namely the determination of the smallest resistance of a body of 
revolution. With the principle of least action and the integral principle, J.L. 
LAGRANGE (1736-1813) and W.R. HAMILTON (1805-1865) contributed to the perfection 
of the calculus of variation. Useful approximation methods basing on variational 
principles of mechanics were devised by Lord Rayleigh (1842-1919), W. RITZ 
0878-1909), B.G. GALERKIN (1871-1945) and others. In a first application on 
optimum structural design variational methods have been treated by J.L LAGRANGE, 
T. CLAUSEN and B. DE SAINT-VENANT. The investigations on finding the optimal 
design of one-dimensional structures under various loadings should be mentioned 
here. Typical examples aloe the bar subjected to buckling loads or the cantilever 
beam under a single load or dead weight, respectively, for which optimal cross
sectional shapes were found by means of the calculus of variation. For this 
purpose, optimality criteria are derived in terms of necessary conditions, e.g. 
Euler's equations in the case of unconstrained problems. If constraints are con
sidered additionally, the Lagrangian multiplier method is employed; it correspond 
to the solution of an isoperimetric problem. During the last decades of this 
century it was especially WILLIAM PRAGER (1903-1980) who gained merit in the 
development of structural optimization [20]. 
It is especially we who, in our theory and application of optimization problems 
in technology, should try to come close to the way of thinking of such important 
scholars. In order to increasingly refute the opinion of so-called "practical men" 
that optimization is "the playground of mathematicians", it is important to re-model 
reality precisely with mUltidisciplinary models to gain sufficiently precise results 
from optimization calculations. This is especially essential for the field of struc
tural optimization which begins to develop slowly from the phase of trial-and-error 
procedures and thereby begins to enter into the design process. 
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2. NOTES ON STRUCTURAL OPTIMIZATION AND DESIGN PROCESSES 

As the term "structural optimization" is nowadays interpreted in many different 
ways, we should try to first of all precisely define the term "structure" or establish 
it from the point of view of structural mechanics. GORDON [2] defined "structure" 
as a material arrangement which serves to resist mechanical loads. The keyword 
"serves" shall be used in the sense of serviceable. All kinds of constructions, 
buildings, components and also skeletons of life-forms and plants are understood 
by that. This division leads to a distinction between "artificial" and "living" 
structures. As the term "material arrangement" says, a distinction between materials 
on the one hand and structures on the other hand will not be possible any more 
in future. 
The information exchange between special branches is beginning to improve. Terms 
like biomechanics, mechatronics, structural optimization prove this. A further 
example is given by the aircraft and space technology. Here, weight used to be 
and still is a "luxury", and material failure can have disastrous or even fatal 
consequences. In this field, special attention has for that reason always been paid 
to the investigation into materials and structures. Because of the increased demands, 
this nowadays also applies to other branches as for example the car industry. In 
order to develop optimal solutions here, it is simply necessary to make efficient 
optimization procedures more and more accessible in future. For the initial design 
of new developments, nature is taken as an example. 
Nowadays, the obligation of multidisciplinary cooperation regards all branches of 
engineering sciences. The mode of cooperation for structural optimization tasks 
can be seen in a VENN-Diagram me in Fig. 2. It shows that the structural 
optimization forms a joint quantity from the engineering disciplines, structural 
mechanics and the mathematical optimization algorithm. The rapid development 
of the computer technology and, connected to that, the efficiency increase of 
algorithms enables us to fast and exactly find the "optimal design" of components 
and constl·uctions. Furthermore, the VENN-Diagramme gives the basic idea, too, of 

DESIGN 
- Components 
- Structures. Mechanisms, 

Assemblies 
- Systems, Plants 

MATERIALS 
- Ferrous 
- Non· ferrous 
- Polymers 
- Composites 
- Ceramics. Glass 

CONTROL 
- Passive Control 
- Active Conlrol 
- Robotics 

OVIL ENGINEERING 
- Sleet Constructions 
- Solid Constructions 

MATHEMA TICAL ALGORITHMS 
- Mathematical Programminll 
- Oplimalily Cnteria 

STRUCnJRAL MECHANICS 
- Analytical Methods 
- Tra.nsfer Melhods 
- Finite Methods 

CONTINUUM MECHANICS 
- Solid Mechanics 
- Fluid· and Thermaltheory 
- Maleriahheory 

Fig. 2: VENN-Dia
gramme of Struc
tural Optimization 
Techniques 
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the fundamental structure of an optimization procedure, i.e. the so-called "Three
Columns-Concept". consisting of a structural model, optimization algorithms and 
an optimization model [3, 4]. 
Depending on the complexity, the development of components and systems for 
mass-production is carried out in several phases: 

1) Feasibility study, 
2) Project definition phase, 
3) Development phase 

- main system 
- subsystem, 

4) Design phase 
- assemblies 
- components, 

} Concept phase 

5) Checking and testing of a prototype, 
6) Production, manufacturing, 
7) Erection phase, 
s) Acceptance phase. 

Each phase is a control process under a systems engineering point of view at the 
end of which decision criteria have to be established for the successive phase. 
Fig. 3 shows such a control loop for the project definition phase. 

The most important steps are: 

Il Definition of the problem formulation, preliminary specification, 
2) P.·epa.·ation and design of concept variants, 
3) Search for solution principles and calculation methods, 
4) Technical-economical evaluations, 
5) Formulation of the final specification-list, 
6) Optimization of the construction and of the components. 

I'n.jlct Sludl~1 
or oth~r 
l:r.tem component. 

Controll.r 

Conl_lIwd S,"lrnl 

I--------j 
I • Project Studl.. I 

of the total 
.,ltem 

1--------------"':-;:---:-'<----. 
1 I 

Non·tlchnlcal 
aillrl. 
(cotts, Urn!!, 
Khl'dul. etcJ 

5,.tlrn 
1PK'lfic:ltion 

~"iou.l,. 
erectrd pllnu 

Fig. 3: 
Control loop of a 
project definition phase 
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INFLUENCES ON DESIGN 
FEATURES 
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,or Design 

'" 
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I Concept Development I Design I Design Process 
Pcojectdefinilion 

Fig. 4: Influences on design in the single phases of a design process [5,6] 

The process within the systems engineering control loop can be made considerab
ly more efficient by inserting optimization procedures between the single stages. 
An optimization cycle could be inserted between the structural analysis (box 3) 
and the decision making (box 7) by means of which certain relevant objectives for 
components could be laid-out optimally. 
The utility of introducing specific optimization strategies into the design process 
is represented in Fig. 4. Fig. 4a shows the freedom of design and the knowledge 
about design depending on the different phases. The two curves with their 
quantitative tendencies demonstrate how the knowledge about design [5] increases 
in the course of the design process while the freedom of design decreases. Almost 
the same characteristics for the possibility of influencing the costs and the 
specific estimation of costs in the different phases are given in Fig. 4b [6]. Here, 
the present problem for the design engineer to make a decision for a special 
design version is demonstrated as it is impossible to give any complete state
ments about the stresses or the final shape of a component or the structure. 
This proves the necessity to use optimization strategies as early as possible in the 
design process. The obligation of economic production and the tendency to reduce 
weight, save energy, increase accuracy and reliability which lead to modern and 
modified constructions do suggest at the same time the use of advanced materials. 

3. OPTIMIZATION MODELLING - SENSITIVITY ANALYSIS 

When dealing with an optimization problem, it is recommendable to proceed accord
ing to the already mentioned "Three-Colums-Concept" [3, 4]. The first step is the 
theoretical formulation of the optimization problem, taking all of the relevant re
quirements into account. In many cases the structural optimization task can be 
considered as a Multicriteria-Optimization-Problem (MC-Problem), i.e. a design vari
able vector x has to be found which makes the m components of the objective 
function vector f as small as possible while fulfilling all constraints. Thus, MC
Problems can mathematically be defined by the following model formulations. 
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a) Model 1: Continuous, deterministic MC-Problem 

"Min" (f(x) : h(x) = 0, g(x) ~ O} 
XE IRn 

with the following symbols 

and 

IRn set of real numbers, 
f vector of m objective functions, 
x E IRn vector of n design variables, 
g vector of p inequality constraints, 
h vector of q inequality constraints (e.g. system equations for determining 

stresses and deformations), 

X:= (XElRn : h(x) =0, g(x) ~ O} 
"feasible domain" where ~ is to be interpreted for each single com
ponent. 

b) Model 2: Discrete, deterministic MC-Problem 

with the discrete design space 

and the N sets of discrete values 

with nj number of discrete values of the j-th design variable. 

d Model 3: Stochastic MC-Problem 

with 

Y 

"Min" (f(y) I P[f(y)) = rf. P[g(y) ~ 0] = ~ } 
YEY 

vector of N random variables (loads, dimensions, characteristic values 
of the material) including design variables, 
vector of the expected values of the N random variables, 
probability, 
vectors of the m or q reliabilities concerning the objective and 
inequality constraints. 

These three models represent the corresponding strategies which are adapted to 
given cases of application. 
Fig. 5 shows the structure of an optimization loop consisting of the columns 
"Optimization Algorithms", "Structural Model", "Optimization model". The optimi-
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Constraints L._._._._._._._._._._._. ~ 

Fig. 5: The structure of an optimization loop 

zation procedure consists in selecting and combining an appropriate optimization 
algorithm with the structural model and the optimization model. An essential 
requirement of structural optimization is the formulation of the structural behaviour 
in mathematical terms (Structural Modelling). In the case of mechanical systems 
this refers to the typical structural response of static and dynamic loads, such 
as deformations, stresses, eigenvalues, buckling loads etc. Here, all of the state 
variables required for formulating the objective function and constraints are 
provided. The structural calculation is carried out using efficient analysis procedures 
such as the finite element method or transfer matrices procedures. In order to 
ensure the largest possible field of application, it should be possible to use several 
structural analysis methods. 

From an engineer's point of view, the optimization modelling is the relevant 
column of the optimization procedure. First of all, the quantities which are to be 
changed during the optimization process, i.e. the analysis variables, are selected 
from the structural parameters. The design model (variable linking, variable fixing, 
approach functions etc.) provides a mathematical link between analysis variables 
and the design variables. In order to increase efficiency and to improve the 
convergence of the optimization computation, the optimization problem is adapted 
to meet the special requirements of the optimization algorithm by transforming 
the design variables into transformation variables. When formulating the optimi
zation model the engineer must take the demands from the fields of design, 
production, assembly and operation into account. 
The use of numerous optimization algorithms, gradients of objective functions and 
constraints must be determined by a sensitivity analysis with regard to the design 
variables. These gradients also provide the design engineer with information about 
the sensitivity of the structure [51 
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In recent years different authors have published numerous works on sensitivity 
methods (among others [7-11]l. Thereby, numerous studies have demonstrated that 
the selection of the optimization algorithms has to ensue depending on the problem. 
This is particularly important for a reliable optimization and a high level of 
efficiency <computing times, rate of convergence etc.). 

4. CONCEPTS FOR ENHANCING THE EFFICIENCY OF DESIGN PROCESSES 

4.1 Interactive Methods [12-14] 

Interactive procedures can be classified according to multiple criteria. A distinction 
can be made with respect to the kind of and the stage at which preference 
information is required from the decision maker (DMl. As a further distinctive 
feature the particular organization scheme of an approach can be considered as 
it prescribes the kind of scalar substitute problems which have to be solved 
during the interactive optimization process. Therefore, two groups of interactive 
organization schemes will be distinguished here: 

a) Superior organization schemes (Fig. 6/1 a, b) 

Methods with a superior organization scheme use scalar substitute problems with 
the preference functions described in [3]. The free parameters leading to a particular 
functional-efficient point can be established in a dialogue with the DM. Each 
substitute problem can be solved by means of any problem-adjusted mathematical 
programming procedure and thus leads to a functional-efficient point so that 
functional-efficient alternative solutions are offered to the DM. 

b) Extended organization schemes (Fig. 6/1 a, c) 

Extended organization schemes are based on the extension of particular mathematical 
programming algorithms so that the preference function can be changed according 
to the preferences of the DM before the scalar substitute problem is finally 
solved. This procedure provides optimization steps within the criterion space in 
the direction of the functional-efficient boundary whereby the DM influences the 
step direction. The method of the mathematical programming cannot be adjusted 
according to the present optimization problem. 
For the real design process interactive procedures have been mentioned or applied in 
only a few cases [3, 14]. This, first of all, resul ts from the nonlineari ty of the 
problems, and furthermore, it is due to the fact that the structural analyses such 
as finite element methods must be carried out numerically which is a time-consuming 
process. In particular, such problems are regarded by DIAZ who presents an 
effective sensitivity analysis to variations in the DM's preferences based on 
sequential quadratic programming [131 

4.2 Integrated Topology and Shape Optimization 

In [1S-17], a new concept is introduced which incorporates the determination of the 
general design or topology of a component into the optimization process. Thus, 
methods of formal structural optimization are already used in the project stage. 
A methodology, consisting of three phases, which uses the so-called homogenization 
method as a tool for finding the topology is described here. The methodology 
couples the homogenization method with a versatile structural optimization procedure 
via image processing method and geometrical modelling techniques. 
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rn[eractive V~ctor Optimili1tlon Methods 

bl () 

Fig. 6: Organization schemes of interactive vector optimization methods [3,14] 
a) Optimization schemes of both structures 
b) Iteration of superior organization schemes in the criterion space 
c) Iteration path of the extended organization schemes in the criterion 

space 

The integration of a topology generating step into the optimization process follows 
the following phases: 

Phase I: Generating information about the optimal topology for a structure, 

Phase II: Processing and interpreting the information about the topology, 

Phase III: Construction of a detailed structural model and optimization model 
based upon the above-mentioned topology and optimization of the 
design with conventional structural optimization techniques 

Phase I is carried out by means of the homogenization method by BENDS0E and 
KIKUCHI, which has proved to be very promising for finding the topology. This 
method requires the definition of a design space (j .e. a space in which the designer 
wants the material to be optimally distributed) and also of material data, loads 
and boundary conditions. 
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Because of the very accurate discretization of the design space into variable 
standard cells, the optimization problem which is to be solved by means of the 
homogenization method can increase immensely in dimension. Several thousand 
design variables are usually defined. 
In order to keep the computing times within a reasonable range, the problem is 
solved by means of a specialized optimality criteria procedure. The optimization 
model should for the same reason be kept simple at this stage, i.e. the number 
of different parts of objective functions and the constraint types should be kept 
as small as possible. 
Detailed, locally defined specifications which are only expected to have a minor 
influence on the optimal topology need not to be considered in Phase I but can 
be included in Phase II and III. What is obtained here is an analytically deduced, 
approximate optimal configuration, a first draft for the design problem based on 
fulfilling the primary structural mechanical specifications. This model forms the 
basis for an integrated structural optimization system. The run of the system is 
roughly demonstrated in Fig. 7. 

Lo.dlnc .sp«tfl.c.t1an .. 
Volume- Con,nraln.till 
Clobal Sp~lfic.Uon 

ITOPOlOCY GENERA.TION MOnUI.E ] 

V.ri.bliI' ' nIU.t Don,.ln 

Fig. 7: Principle flowchart of the Three-Columns-Concept [15-17] 
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4.3 Decomposition Strategy for Treating Large Scale Systems 

It is possible to subdivide complex structural optimization problems (Large Scale 
Systems) into small and clear parts by means of decomposition strategies. Details 
about this are to be found in [18-19]. 

The general optimization problem is described as follows: 

Min (f(x, u(x» I h(u(x» = ° , g(u(x» ~ 0, gG(x, u(x) ~ 0, xL ~ X ~ xu} , (1) 

where f is an objecthe function, x a design variable vector, h state equations, 
u (xl state variable vector, g local constraints, gG global constraints, xI.: Xu side 
constraints (bounds>. The optimization carried out by means of a decomposition 
technique refers to the following steps: 

Step 1: 
Step 2: 
Step 3: 
Step 4: 
Step 5: 

Establishing a main system model, 
Establishing subsystem models, 
Determination of coupling information, 
Optimization of substructures, 
Iteration loop. 

MAIN SYSTEM LEVEL 

STOP 

Fig. 8: 
Flowchart of decomposition 
steps [18,19] 
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Fig. 8 gives a survey of the complete decomposition strategy and is divided 
into main system modules (approximation and control) and substructure modules 
(optimization of the substructures)' The decomposition strategy starts with an 
initialization phase providing all data for structural and optimization models of 
main structures and substructures including the starting point "0 of the design 
variables as well as further data for defining the interfaces of the subsystem. 
The data exchanges are carried out with the help of a data-management system. 

CONCLUSION 

The necessity of introducing optimization techniques into the design process is 
beyond question because of the following reasons: 

1) Increasing the quality and quantity of products and plants and at the same 
time reducing costs and thereby being competitive. 

2) Fulfilling the permanently increasing specification demands as well as considering 
reliability and safety, observing severe pollution regulations and saving energy 
and raw materials. 

3) Introducing inevitable rationalization measures in development and design officies 
(CAD, CAE) in order to save more time for the staff to work creatively. 

Starting with a definition of a structure, the design process and the structural 
optimization it is shown which influences have an effect on the design process, 
and that decisions in form of optimization strategies are necessary. An efficient 
sensitivity analysis of the different structural parameters is of special importance. 
The sensitivity analysis is a tool for a number of optimization algorithms. Further
more, interactive procedures are to be developed and used more and more. The 
topology optimization for finding optimal initial designs, and the multilevel opti
mization for treating Large-Scale-Systems have to be preferentially developed further. 
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7500 Karlsruhe, West Germany 

Biological load carriers always grow into a shape whereby a constant stress can be found 

everywhere along the surface of the biological component for the most significant natural 

loading applied. This avoids local stress peaks and therefore pre-defined failure points in 

the design. This mechanism of adaptive growth is copied by the so called CAO-method 

(Computer Aided Optimization). The method is briefly described and the shape optimiza

tion of a tree fork illustrates the adaptive growth. Furthermore a rubber bearing, a bending 

bar with rectangular window as well as a joint of metal sheets are shape-optimized as 

engineering examples. In cases where the design proposal which the CAO-method starts 

from cannot be guessed easily, an oversized rough proposal can be analysed by FEM. 

After cutting off unloaded parts, the remaining structure can then be used as a starting 

design for CAO. 

1. Introduction 

According to the authors knowledge, the first publication concerning with the constant 

stress state at the surface of biological load carriers was written by Metzger [1J in 1893. 

He had found a relation of h~D3 between height h and diameter D of spruce tree stems. 

The same relation is valid for a cantilever beam loaded by a lateral end load if a constant 

bending stress along its length is required. The lateral load is of course the effective wind 

load acting at a point within the crown of the spruce tree. In further studies [2,3,4J Mat

theck et al. have shown that this constant stress hypothesis holds true also for all other 

parts of the tree such as root-stem joints, branch-stem joints etc .. There are indeed no 
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notch stresses at these joints although the force flow has to be redirected from the branch 

into the tree stem and from the stem into the roots, respectively. The ingenious tree obvi

ously knows how to design its unavoidable nOlches in order to avoid any notch stress. 

Even if the tree is injured (notched) mechanically, it will hurry to reduce the related notch 

stresses by adaptive growth, restoring the constant stress state. The principle of adaptive 

growth is as easy as nature itself: More material will be attached at overloaded places 

where the stresses are higher than a reasonably defined surface stress. Either no material 

will be attached (as in trees) or can even be removed (as in bones) at underloaded places 

characterized by stresses lower than the reference stress. Exactly this mechanism is 

computer-simulated by the CAD-method [5,6]. 

In a previous paper [7J the method is described in an earlier state where volumetric 

swelling is used to simulate growth. In the next chapter it will be shown how the 

CAD-method works at present state, e.g. by stress-controlled thermal expansion simula

ting adaptive growth. In this way not only biological growth may be simulated, but also 

engineering components may be optimized Marting from a reasonable design proposal 

which may grow into an optimized design with a homogeneous stress state and thus 

avoiding any notch stresses. 

2. CAO: Computer Aided Optimization 

The CAD-method in the present state consists of the following steps: 

1. A reasonable design proposal is made which growth can start from. 

2. A FEM-mesh has to be generated. The outermost layer of the Finite Elements has to 

be of equal thick.ness at least at these parts of the surface where growth will later be 

allowed. 

3. Now an elastic FEM-run is performed with the load and boundary conditions expected 

in later service. 

4. The Mises equivalent stresses of step 3 are now set formally equal to a fictitious tem

perature field. 

5. This temperature field is the only loading in the next FEM-run where only the surface 

layer of Finite Elements has a non-zero heat expansion coefficient. Furthermore the 

elastic modulus E of this thin surface layer is reduced E -4 E/400. 
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6. The thermal displacements calculated in step 5 are now scaled up and added to the 

nodal point coordinates of the original structure. This is now already an improved 

design. After mesh correction and resettinll the elastic modulus equal to its former 

value, the procedure starts again at step 3. 

7. The procedure will be stopped if the Mises stress is completely constant along the 

surface of the component or if further growth is restricted by design limitations. 

The procedure is sketched schematically in Fig.1. 

If biological growth is simulated in a tree, bone etc. another result can be gained by CAO. 

One will only get agreement with the biological design in reality if the loading and boun

dary conditions assumed for CAO-application agree well with those from real nature. In 

this way the natural loading may be determined by comparison of the natural growth 

product with the shape of its CAO-simulation. This is of extreme importance, because in 

many cases the load situation in plants and animals is unknown and subject to intense 

research and heated discussion. 

3. Application of CAO 

The method described in the previous section will now be demonstrated by practical 

examples. 

3.1 Tree forks 

At first view a tree fork looks very dangerous and pre-defined to failure. Especially if one 

imagines the loading case of bending two individual stems away from each other. Indeed 

this loading case would be risky if the inner contour line of the fork would be a semi-circle 

as the non-optimized design proposal in Fig.2 shows. However, adaptive growth simulated 

by CAO will completely reduce the notch stresses in the tree fork. The optimized design 

fils exactly the contour of a really grown fork of the walnut tree shown. It is interesting that 

trees of completely different outer contour may have the same inner contour of the fork 

which therefore seems to be most important for the degree of shape optimization. 

The example of the tree fork illustrates that biological notches do not cause notch stres

ses, because they are adapted to the force flow. 

In the following, examples from engineering will be considered. 
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3.2 A bending bar with rectangular window 

The non-optimized design in Fig.3 shows high localized notch stresses. It is one of the 

advantages of the CAO-method that it works for 3D-problems just as easy as for 2D-cases. 

The only extra effort is the generation of a 3D-mesh. However, this has to be done in any 

FEM-analysis, too. The optimization leads straight forward to the optimized design which 

is free of any notch stress. Fatigue tests have proved a more than 40 times longer fatigue 

life of the optimized structure without breakage or even visible crack initiation compared 

to the non-optimized design. 

The next examples also of 3D-quality, however are more difficult because of some 

restrictions. 

3.3 Welding of sheet metals 

Two components of sheet metal are welded together. The problem was to optimize the 

contour of the welding in order to avoid localized stress peaks. As a further restriction, the 

thickness of each individual metal had to be constant. Therefore one side of the metal was 

allowed to 'grow' whilst the other side has been moved the same local amount in the same 

direction during the step of mesh correction. Beyond this, no problem-specific modifica

tions have been necessary. Although design changes are limited here to changes of the 

weld curvature, a stress reduction of 14% was reached (Fig.4). Up to now the design pro

posal could easily be guessed. This will be frequently the case if a trouble component 

always breaking in service is the subject of the optimization. In this case just the trouble 

component itself may be used as a starting design and the CAO-method will do the rest. 

However, under comp'lex loading and boundary conditions the design proposal cannot be 

guessed. For these probably rare cases the following sample procedure has been used 

successfully. 

4. The KILL OPTION - a straight way to pre-optimize design proposals 

The procedure consists of only three steps: 

1. A rough design proposal of simplest geometrical shape (cylinder, brick, sphere etc.) 

within the design limitations is generated as a FEM-mesh. 
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2. A FEM run is performed with the load and boundary conditions expected in later ser

vice. This will give the distribution of Mises equivalent stress within the design. 

3. Now the non-load bearing parts of the structure having small Mises stresses are 

'killed', e.g. cut off along the threshold-isoline of the Mises stress. 

The remaining design will be used now as a pre-optimized design proposal for a following 

CAO-application. 

Because it may cause trouble to generate a mesh bordered by isolines of the Mises 

stresses, a sophisticated FEM-mesh generator 'POL YPHEM' [8] is used in the Nuclear 

Research Center which allows to take a picture of the cut-off contour line by a video 

camera followed by automatic generation of a FEM-mesh within this contour by POL Y

PHEM. Furthermore this comfortable program takes care that the border of the mesh has 

the equal thickness layer of finite elements which is inadmissable for CAO-use. 

5. Conclusions 

The major results of the paper may be summarized in the following statements. 

• CAO is a powerful method for the simulation of biological growth as well as for engi

neering shape optimization leading to light weight and fatigue resistant components. 

• The KILL OPTION is an easy and straight forward method providing the user with 

pre-optimized design proposals for further optimization with CAO. 

• POL YPHEM helps to generate easily FEM-meshes even of structures with complex 

boundaries as it may result from the use of the KILL OPTION. 

• The combination of KILL OPTION and CAO is a complete lay-out theory. 

• CAO works well for 2D- and 3D-problems and the user needs only a FEM-program and 

nothing else. 

• Because no problem-specific modifications beyond the generation of the individual 

FEM-mesh is necessary, the CAO-method is a very effective tool espeCially with prac

tical problems in industrial enviroments. 



www.manaraa.com

20 

6. References 

[1] K. Metzger 
Der Wind als ma!3geblicher Faktor fur das Wachstum der Biiume 
Mundener Forslliche Hefte, Springerverlag 1893 (in German) 

[2] C. Matlheck 
Why they grow how they grow - the mechanics of trees 
Arboricultural Journal 14 (1990) 1-17 

[3] C. Matlheck, G.Korseska 
Woundhealing in a plane (Platanus Acerifolia (Ait.) Willd.) 
an experimental proof of its mechanical stimulation 
Arboricultural Journal 13 (1989) 211-218 

[4] C. Mattheck, H. Huber-Betzer, K.Keilen 
Die Kerbspannungen am Aslloch als Stimulanz der Wundheilung bei Biiumen 
Allg. Forst- und Jagdzeitung 161 (1990) 47·53 (in German) 

[5] C. Mallheck 
Engineering components grow like trees 
Materialwissenschaft und Werkstofftechnik 21 (1990) 143-168 

[6] C. Mattheck, S. Burkhardt 
A new method of structural shape optimization based on biological growth 
Int. J. of Fatigue 12 No 3 (1990) 185-190 

[7J C. Mattheck, H. Moldenhauer 
An intelligent CAD-method based on biological growth 
Fatigue Fract. Engng. Mater. Struct. 13 (1990) 41-51 

[8] POL YPHEM 
Information brochure by Science&Computing GmbH at the Institute for 
Theoretical Astrophysics, University of Tubingen, FRG 



www.manaraa.com

21 

Notch to be optimized 

Example 
Surface layer of 
Uniform thickness 

Elastic FEM-run with loading 
J[ expected in later service 
u.J -il. 
t U mises == T(x,y,z), temperature . 

c 
c -il. -.:::t 
........... 
u.J New FEM-run with: -~ 

_ ........ • Thermal loading T(x,y,z) only 
c:: • E - E/400. in surface layer c .--c,:) 

• Heat expansion coefficient Q) 
a... 
a... 

a -# 0 only in soft c 
c,:) 

.c: surface layer (I) 
Q) 

-il. :E 

It Thermal displacements added to 
nodal point coordinates 

======================~==== 

Fig.1: Procedure of CAD 



www.manaraa.com

Tree forks 

non-optimized 

v.Mises-stress distribution 

non-optimized 

FIg.2: 

22 

tangential stresses along contour 

,- , 

'.' .. 
'i 1. 1 

000 ... "m''''1 '.' 

..• 
V ... 

.. 

... 

... 
... . .. 

11 10 

l ' OEl . 
90 . 6 

Ig0 (3 
I -;-O.B 
IbO B 
150 0 
1-l 0.8 
130 B 
120 . 0 
I , 0. <) 

10 
I 

/ 
optimized 

'-' '-' LO 

optim ized 

~ 
----..:::: 

... . .. .., ... 
SIC 

L. 

opt imized 

FEM: Uwe Vorberg 

Tree fork under bending load 

. .. 



www.manaraa.com

A 

c 

-s -

E 

non-optimized 

Fig.3: 

23 

optimized 

~ 

non-optimized 

B 

A 

v. Mises stresses along contour s 

o 
>.lS .---~_~-,---. ___ ~ __ .. 

t 2.0> 

~ 1.TS 
I> I.'" 

1.>5 

non·optimized 

0.>5 

o·og.'::o>,......~"""'7o.':::>5~~~o::"'."'=-~~o:-':. ,=-.~-"":"' 

A 

v. Mises-stress distribution 

F 

..... .... . ,,. 

. ~ .. .... . , .. . , ... 
11..50 ., .. 

.,., 
I. 
I 

Bending bar with rectangular window 



www.manaraa.com

24 

JOINT OF METAL SHEETS 

STRESS REDUCTION: 14% 

MISES STRESS DISTRIBUTION: 

NON-OPTIMIZED 

Flg.4: 

., 25 
I, . 00 
1.758 
'.501 
1.258 
1 

OPTIMIZED 

FEM: SUSANNE BURKHARDT 

Welding of sheet metals 



www.manaraa.com

SHAPE AND LAYOUT 

OPTIMIZA TION 



www.manaraa.com

TOPOLOGY AND BOUNDARY SHAPE OPTIMIZATION 

AS AN INTEGRATED TOOL FOR COMPUTER AIDED DESIGN 

Martin Philip Bends0e 

Mathematical Institute 

John Rasmussen 

The Technical UniverSity of Denmark 

Building 303 

Institute of Mechanical Engineering 

Aalborg University 

Pontoppidanstrrede 101 
DK-2800 Lyngby, Denmark DK-9220 Aalborg 0, Denmark 

Helder Carrico Rodrigues 

Mechanical Engineering Department 

Technical UniverSity of Lisbon 

Instituto Superior Tecnico 

1096 Lisbon Codex, Portugal 

Abstract: The optimal topology of a two dimensional linear elastic body can be computed by 

regarding the body as a domain of the plane with a high density of material. Such an optimal 

topology can then be used as the basis for a shape optimization method that computes the optimal 

form of the boundary curves of the body. This results in an efficient and reliable design tool, which 

can be implemented via common FEM mesh generator and CAD input-Qutput facilities. 

1. Introduction 

Traditionally, in shape design of mechanical bodies, a shape is defined by the 

orientated boundary curves of the body and in shape optimization the optimal form of 

these boundary curves is computed. This approach is very well established (cf. review 

paper by Haftka, [1]) and commercial software using this method is available. The 

boundary variations methods predicts the optimal form of boundaries of a fixed, 

a priori chosen topology. However, it is well known that the topology is a very 

important element of the final performance of a mechanical body. As an alternative to 

the boundary parametrization of shape, a mechanical body can be considered as a 

domain in space with a high density of material, that is, the body is described bya 

global density function that assigns material to points that are part of the body. By 

introducing composites with microvoids, such shape design problems appear as sizing 

problems for fixed reference domains, and a prediction of topology and boundary shape 

is possible ([2J-[6]). 
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Volume = J n (J.l + 'Y - Wy)dn (5) 

Alternative microstructures such as square or rectangular holes in square cells can also 

be used, the important feature being the possibility of having density values covering 

the full interval [0, 1]. 

The optimization problem can now be solved either by optimality criteria methods ([3]) 

or by duality methods, where advantages is taken of the fact that the problem has just 

one constraint. The angle 0 of layer rotation is controlled via the results on optimal 

rotation of orthotropic materials as presented in Ref. [7]. 

It turns out that this method allows for the prediction of the shape of the body and it is 

possible to predict placement and shape of holes in the structure. 

3. Integration 

In order to finalize a design obtained by the material density approach, it is reuired to 

optimize the final shape of the boundaries of the optimal topology. The choice of initial 

proposed form for the boundary optimization methods is usually left entirely to the 

designer but the material distribution optimization gives the designer a rational basis 

for the choice of initial form. 

Interfacing the topology optimization method with the boundary variations method is a 

problem of generating outlines of objects from grey level pictures. A procedure for an 

automatic computation of the proposed initial form for the boundary variations 

technique could thus be based on ideas and techniques from image analysis and pattern 

recognition. For the examples presented in this paper, the outlines for the initial 

proposed form were generated manually thus mimicking a design situation where the 

ingenuity of the designer is utilized to generate a 'good' initial form from the topology 

optimization results. The term 'good' in this context covers considerations such as ease 

of production, aesthetics etc. that may not have a quantified form. A reduction of the 

number of holes proposed by the topology optimization by ignoring relatively small 

holes exemplifies design decisions that could be taken !Afore proceeding with the 

boundary variations technique. 
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The material density approach should be seen as a preprocessor for boundary 

optimization and by integrating the two methods a. very efficient design tool can be 

developed. In an integrated system, common CAD input-output facilities can be used 

as well as a common mesh generator for the FEM analysis. Interfacing the two methods 

by a CAD based module added to the input facility for the boundary variations 

method, allows the designer to actively control the information used and such 

interactive possibilities have been found to be very important. 

2. Topology optimiza.tion 

For the topology optimization we minimize compliance for a fixed, given volume of 

material, and use a density of material as the design variable. The density of material 

and the effective material properties related to the density is controlled via geometric 

variables which govern the material with microstructure that is constructed in order to 

relate correctly material density with effective material property. 

The problem is thus formulated as 

so: 

where 

min L(w) 

ao(w, v) = L(v) for all v E H 

Volume S V 

(1) 

Here, f, t are the body load and surface traction, respectively, and (ij denotes 

linearized strains. II is the set of kinematically admissable deformations. The problem 

is defined on a fixed reference domain 11 and the rigidity Eijk1 depend on the design 

variables used. For a so-called second rank la.yering constructed as in Fig. 1, we have a 

relation 

(4) 

where 1', 'Y denote the densities of the layering and 0 is the rotation angle of the 

layering. The relation (4) can be computed analytically ([3]) and for the volume we 

have 
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4. Boundary optimization 

Once the optimal topology and initial boundary shape is defined, the objective is to 

refine this initial shape, such that the final structure will be the optimum structure of a 

more refined design model, where global as well as local displacement and stress 

constraint (objectives) are taken into consideration. For example, we could seek a 

structure where the von-Mises equivalent stress in the body is minimized, subject to a 

resource and compliance constraint: 

min max ueq 
x E 0 (6) 

so: Equilibrium 

J dO ~ V 

Compliance ~ ¢J 

Here D denotes the set of admissable boundary shapes, defined through local 

geometric constraints, and with boundaries defined through boundary nodes or spline 

control points. 

Alternatively, we could seek to minimize weight for a given set of stress and 

displacement constraints: 

min J dO 
so: Equili bri urn 

ueq(x) ~ umax for all x (7) 

I u(x) I ~ U- for all x 
00 

The integration has been carried out for two different boundary shape optimization 

systems ([8], [9]). In the case of (6), this problem is solved with a gradient technique, 

with shape sensitivities obtained via the speed method ([5]). For the sensitivity 

analysis, very precise estimates of stress is required and for this reason, the equilibrium 

is defined via the stationarity condition for the Hu-Washizu variational principle ([8]). 

Also, a boundary fitted elliptic mesh generator is used to generate the FEM-mesh used 

for the numerical solving procedure for the mixed analysis problem. This mesh 

generator is employed at each iteration step of the boundary optimization, thus 

maintaining good mesh properties throughout the shape modification process [5]. In 

order to cater for the non-simply connected domains predicted by the topology 

optimization system, the mesh generator is based on a subdivision of the domain by 

blocks. The rcmcshing is a crucial element in the boundary optimization procedure and 
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together with the use of a mixed FEM method, allows for the boundary movements to 

be parametrized by movement of the FEM nodes along the design boundaries ([8]). 

For the problem defined by Eqs. (7), the CAD-based system CAOS was employed [9]. 

This shape design system is fundamentally of similar type to the one described above, 

i.e. it is based on a boundary description of shape. However, the implementation is 

somewhat different in detail. One important common procedure is to use an efficient 

meshing technique, and to employ this throughout the iterative design process. The 

meshing is based on the division of the structural domain into design elements 

(quadrilaterals) and boundaries are parametrizised through control nodes for a spline 

representation of boundaries. Optimization techniques employed cover SLP and 

CONLIN (see [9]). The integration with CAOS was greatly simplified by the geometric 

design model and showed the ease of integration of the topology optimization method 

into such CAD-based shape optimization systems. 

5. Examples 

Ffgures 2 through 4 show examples of 2-dimensional structures optimized through the 

material distribution method followed by a boundary variations technique, as described 

above. 

As can be seen, the topology optimization results in very good initial forms obtained 

for the boundary variations technique. Generally, only small and localized design 

changes occur during the boundary optimization, if the problem formulation (6) is 

used. Typically, the minimization of the stress level during the boundary optimization 

also results in some decrease in the compliance, but this is not unexpected as the 

drawing of the initial form from the topology data constitutes a not insignificant 

pertubation of the minimum compliance design. For the problem formulation (7), the 

topology optimization results in so good initial proposed forms that the boundary shape 

optimization gives rise to some quite large design changes, albeit mostly in the sense of 

scaling; however, the gains obtained through the use of topology optimization are quite 

significant. 
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MACRO-SCALE 

MICRO-SCALE 1 

MICRO-SCALE 2 

Fig. 1. Construction of a layering 
of second rank. 

Fig. 2. Optimal design of a beam. A: 
Optimal topology with outline showing 
reference domain. Band C: Initial and 
final design using the boundary variations 
method. Two blocks are used for the 
ellipl.ic mesh generator. Only the 
boundaries of block 1 can move. The 

-'---------" a maximum stress is reduced by 55.7% and 
the compliance by 7.3%. Block divisions 
are shown as hatched, bold lines: design 
boundaries as bold solid lines. 

c 
b 
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a b 

2 

c d 
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e 

Fig. 3. Optimal design of a fillet. A: The reference domain showing loads etc. and the reduced 
design area. B: The optimal topology. C and D: Initial design and optimal design with the 
boundary variations method. Mesh generated using three blocks. E and F: Initial and final optimal 
design using different meshes (two blocks). G: Optimal design with no hole (minimum compliance 
design). 
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Fi£ . Volume Deflection Max. stress 
Initial, infeasible design A 1.07 10.1 292 

Optimal Circular lIoles 1.10 9.4 248 

Optilllal Doundary of !Ioles D 1.02 9.4 372 

Optimal Topology C 1.10 6.0 227 

Final Design D 0 .62 9.4 305 
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Fig. 4. Optimal design of an aircraft support beam. Design requirements are: upper and lower 
surfaces must be planar and the beam of constant depth: there must be a number of holes in the 
structure to allow for running wires, pipes etc. through the beam. The optimal design problem is to 
minimize weight so that the maximum deflection does not exceed 9.4 (mm), and the maximum von 
Mises stress should not exceed 385 (N/mm2). Only half of the beam needs to be analyzed. The final 
design is 64% better than the design with optimally shaped boundaries of initial holes. See table for 
values of objective etc. and figure references. 
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1. Introduction 

Shape optimization by moving boundaries is now a well established technology, 
which enters commercial programs. Following the philosophy of Schmit [1], Fleury [2] 
and many other contributions, the movable shape problem is described by means of 
a blending function, which is governed by a comparatively small number of variables. 
This property disposes the approach favourahle to mathematical progamming (MP), 
which can handle all types of objectives and constraints very easily. However since we 
have to preselect the position of the moving boundary as well as the type of the blending 
function, the process of finding an optimal shape is quite predetermined. We are for 
instance not able to create automatically voids. 

In [3] Bendsoe and Kikuchi introduced a novel approach of distributing mass within 
a specified design domain utilizing a stiffness-density relation. The design space is 
discretized and the element densities form the variables of an topological design, which 
can be treated as easy as sizing (fig. 1). This procedure relates almost total freedom 
to the design process, involves however a large number of variables. Nevertheless we 
are able to create an efficient algorithm by working under simplified conditions. In [3] 
the compliance is minimized for a specified amount of structural mass and constrained 
densities and optimality criteria methods OC are employed to solve that problem. It 
became immediately apparent to the authors, that the generated designs seemed to be 
very useful as starting designs for optimal shape moves. Consequently we established 
that procedure, developed a modified scheme for the material stiffness-density relation, 
introduced multiple loading cases and spacious applications [4],[5],[6],[7]. Investigations 
for quite general sets of objectives and constraints employing MP showed however, that 
the large number of density variables is for a general application disadvantageous. 

Nevertheless the designs provided for the objective compliance, specified displace
ment or eigenvalue seem to be very useful as starting designs for a more general MP
approach and therefore the optimal mass distribution (OMD) was implemented as a 
preoptimizer PREOPT to the general shape optimizer OPTIMA-S, which works by 
boundary moves (OUM). 

The mathematical formulation of both approaches is effectively the same. We 
minimize an objective function 

W(x) = min! (1) 

which denotes in the simplest case of OMD the max-compliance-function over the load
ing cases and may be of arbitrary nature for OUM. The minimization is subject to 
constraints 

g(x)so (2) 
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of an arbitrary number and character for OIlM (stress, displacemellts, eigcnfrcquencies, 
buckling values). In the simplest case of OMD we have only one active constraillt namely 
the amount of mass assigned to the design space. In both approaches direct variable 
limits are involved. 

(3) 

Objective function W and generally also the constraints 9 are implicit and highly non
linear functions of the design variables %. 

Therefore the working scheme for OIlM as well as for OMD involves three essential 
steps, which are based on L. Schmit's philosophy [1). First an analysis model (finite cle
ment discretized structure) is used to compute values and design derivatives of implicit 
behaviour functions. Second we use these informations to construct an explicit approxi
mation (behaviour model). Third we feed this explicit approximation into an optimizer. 
The optimum of the behaviour model is used for a refresh operation, which closes the 
design loop. In the following we discuss this approach with special considerations of 
second order sensitivities and approximations of behaviour functions. 

2. Aspects of second order sensitivity computation 

We start our considerations with an exemplary discussion of displacement depen
dent functions as 

g(%,r(%» (4) 

which depends either explicitely or implicitely via the displacement vector r(%) on the 
design variables % • 

Kr=R (5) 

describes the static equilibrium and K denotes the stiffness matrix, R the load. As 
relation for the first derivative we find in textbooks 

dg = 8g + 8g K- 1 [dR _ dK r] 
dx; 8x; 8r dx; dx; 

(6) 

where'd' indicates here a complete differentiation with respect to a design variable and 
'8' denotes a differentiation to the explicit variables only. 

The adjoint approach makes use of the solution 

-I 8g 
Sa = K 8r' 

and the socallcd direct approach utilizes the result 

!!!:.. = K-1 [(LR _ dK r] 
dx; d;r; dx; 

(7) 

(8) 
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Correspondingly we need for m functions and n variables in the adjoint method m 
forward-backward-substitutions (FBS) and for the direct approach n FBS. If we proceed 
to second derivatives of (4) we receive 

d2g fJ2g dr' [j2g dr -- = -- + -----
dXidxj OXiOXj dXj orDr' dXi 

o2g dr D2g dr 
+---+----

orox j dXi Droxi dx j 

, [ lfl-R lfl- K dK dr dK dr ] 
+ Sa dXidXj - dXjdXj r - dXj dXj - dXj dXi 

(9) 

Eq. (9) may be regarded as second order adjoint approach. We detect immediately, that 
no additional FBS are necessary to compute (!J), provided we know both the adjoint and 
direct solutions of the first order computations, which involve n + m FBS (Haftka [8]). 
With reference to (7) we may also rewrite (!J) to yield the second order direct approach, 
which utilizes the second displacement vector derivatives 

(10) 

and requires the direct first order results (n FBS) plus n(n + 1)/2 FBS. 
Hitherto the discussion was based on the tacid assumption, that derivatives of load 

vector R and stiffness matrix K with respect to the design variables are available. In 
OMD having element densities as design variables an analytic derivative computation 
is easy to implement. We simply substitute the material stiffness by the known mate
rial stiffness derivatives and compute formally element stiffnesses. Moreover all second 
mixed derivatives are zero. If we regard the special function compliance, the adjoint 
solution is given by the displacement vector r and the adjoint approach provides trivial 
and cheap first order results. For second derivatives of compliance we need however 
the direct first order solutions (displacement derivatives) and the expense is increased 
considerable. 

In OBM we work with shape variables. The implementation of analytic stiffness 
derivatives is nontrivial and affects also element dependent routines. If we are not 
willing to take this burden, we may use numerical schemes as we do in this paper. 
We can either use the second adjoint approach replacing unknown derivatives by the 
corresponding difference expression. This method can be denoted as second order semi
analytic computation and its accuracy is subject to current investigations. We require 
for this approach at least approximations for first order displacement sensitivities. The 
simple first order semianalytic result is in some cases quite inaccurate and may be not 
admissable for this purpose. In the simplest case we need n + m FBS. The second order 
direct approach involves the same problems and requires at least n plus n(n + 1)/2 
FBS. A third choice is given by a second order overall difference scheme (see e.g. fig. 
2). This scheme provides first and second derivatives with an cut-off error of order ,6.2 

where ,6. denotes the size of variable change (modification). If we develop an iterative 
computation of the modified states giving incremental function changes we may use 
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quite small modification values. We use the triangularized stiffness matrix of the un
modified state 0, but need per modification some FBS (4-5 with initial state 0). We 
may however utilize computed information to reduce this expense as indicated e.g. in 
fig. 2. The complete setup of second derivatives by the overall difference approach is 
quite expensive involving 2n2 modifications. For other than experimental investigations 
the implementation of analytic derivatives is therefore even more urgent if second order 
sensitivities are demanded. As we will see in the next chapter we use for economic 
reasons preferable separable approximations. In this case the number of necessary mod
ifications is reduced to 2n. We turn our attention now to a second class of functions, 
namely eigenvalue functions as buckling values or eigenfrequencies. 

g(A(:r:» (11) 

where 
(B - ,\K.) + = 0 (12) 

describes the corresponding eigenvalue equation. The matrix B denotes either the mass 
matrix or the geometrical stiffness, K e is the elastic stiffness matrix and the eigenvalue 
,\ embraces either the inverse of square circular eigenfrequency or the negative inverse 
of the load scale factor. A side condition fixes the length of the eigenvector '1>, e.g. for 
stiffness orthogonal eigenvectors 

(13) 

The relation for first derivatives requires as prerequisite only B respectively K e matrix 
del'ivatives. 

~ = +' (iD _,\ dKe) 'I> 
dx; ([x; dx; 

(14) 

This aspect was already discussed in the first part of this section. We may however 
point out, that dynamic problems in the OMD approach involve only constant mass 
derivatives, since the mass matrix is linear in the density variables. Buckling problems 
employ the displacement dependent geometrical stiffness matrix and are more difficult 
to handle. We proceed now to second derivatives of eigenvalues. 

(15) 

Unfortunately this relation includes also eigenvector derivatives whicll can be deter
mined from 

(16) 
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Obviously this system is singular. A necessary side condition is obtained by differenti
ating (13). 

2i)'K. di) = _i),dKei) 
dXi dXi 

(17) 

We may solve this set of equation either by Nelson's approach [9,10] or by the generalized 
inverse procedure [11]. Both methods are expensive, since they work on a large set of 
equations. 

A first choice for numerical computation of derivatives would embrace again the 
replacement of matrix derivatives by differences (semi analytical approach). This scheme 
would however not circumvent the expensive solution of (16),(17). A second choice 
is to employ the overall difference approach. Since the corresponding modification 
should be kept small, we may engage a vector iteration procedure for modified systems. 
This method will be discussed in a forthcoming paper. A third possibility is to gain 
(approximate) second order information from the difference of first order derivatives, 
utilizing the first order derivatives of two neighboured designs. 

3. Second order explicit approximations 

In this section we discuss some possible explicit approximation schemes, which 
utilize second order information. 

Half (luadratic scheme 
This approach was already used ill [12J. A typical fuuction g is described by 

g=aO+ L [aj(Xj-XjO)+ ~bj(Xj_Xjo)2] 
} 

and the coefficieuts are determined by first order 

respecti vely by second order sensi ti vi ties 

b. = (d2 g ) } dx~ 
} 0 

(18) 

(19) 

(20) 

We require only direct second derivatives since the approximation is separable. Also we 
may establish a convex function by taking into account only positive second derivatives 
(fig. 3a). In the latter case we drop of course already computed information and 
receive only linear contributions. This model behaves in application very well. Since 
the curvature is constant, we observe a somewhat too optimistic behaviour. 

Generalized power approach 
This scheme was also applied in [12]. The explicit approximation reads now 

g = ao + Lajx~; 
j 

(21) 
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and the powers are determined by second derivatives 

PO=1+(tPg ) xoo/(.!!L) ) dx~) dx 0 

) 0 ) 0 

(22) 

and the coefficients by first order sensitivities. 

( d9 ) I-poI 
aj= dXj oXjo I Pj (23) 

Again this scheme is separable and we need only second derivatives. We receive in gen
eral (Pj 1= 2) also variable curvature. For positive second order sensitivities (d2gldx~)o 2: 
o we obtain convex contributions (fig. 2b). Negative first order sensitivities may result 
in negative powers, which limits the range of application to positive variables. This 
limitation provides no specific problems. The model exhibits a well balanced behaviour. 
It may be converted to a first order scheme by prescribing fixed powers, e.g. the hybrid 
approach [13,14) selects Pj = ±1 to establish It convex approximations. The use of other 
powers (generalized hybrid scheme) is possible. 

Generalized method of moving asymptotes 
This approach was initiated by Svanberg [15) as convex approximation scheme. It uses 
either an upper or an lower asymptote dependent from the sign of the first derivative 
(fig. 3c) 

gi = aiO + L aij'- II (Uij - Xj) 
j ...... I/(xj -Lij) 

(24) 

The original version did not consider function dependent asymptotes, but worked only 
with variable dependent asymptotes. This restriction has the advantage that It minimiz
ing variable set in the dual approach clln be determined analytically, whereas the more 
general scheme above needs one dimensional line searches. The individual asymptotes 
may be fixed by utilizing second derivatives as follows: 
If (dgddxj)o cO 

? (d9i ) I (tP9i ) Uij = x jO + - -d 0 -d 2 
x) 0 Xj 0 

(25) 

2 (dgo ) aij = (Uij - XjO) dx: 0 (26) 

( dgo) (d2go ) Li o = xoo +2 -' I --' )) dx 0 dx~ 
) 0 ) 0 

(27) 

aij = - (x jO - Lij)2 (:::) 0 (28) 

We receive again a separable scheme, which needs only second derivatives. Since Uij > 
XjO respectively Lij < XjO are natural requirements, only positive second derivatives 
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can be admitted. This scheme is therefore by definition convex. As we easily see from 
(25) respectively (27) large second derivatives will lead to tightly to x jO neighboured 
asymptotes. The approximation assumes therefore quickly very large values, which 
makes this approach under this conditions quite conservative. This property leads to 
delayed design steps and to many refreshment iterations. 

FUll second order Taylor 
The full second order Taylor approximation is nonseparable and requires all second 
derivatives. 

(29) 

(30) 

bjk= (~) 
dXjdxk 0 

(31) 

The large amount of data prohibits a general application in that sense, that objective 
and constraints are all approximated by t.his scheme. It may be a useful tool for some 
experiments discussing the separability of a real behaviour. One possible application 
suggested by Fleury [16] is the approximation of the Lagrangian in a dual approach 
employing sequential quadratic programming. The above scheme is convex for positive 
definite B. It is well behaved, employs const.ant curvature and tends to be too optimistic 
in structural applications. 

4. Optimizer and second order approximations 

We turn our attention in shortness to the third working step, nanlely to the op
timization working on the explicit approximations discussed in the previous section. 
The most efficient procedure tested uptodate is the dual solution scheme for separable 
convex approximations (SCP). A special CP-version in OMD (objective compliance, 
constraint specified mass) was even faster as simple OC-mcthods. Nevertheless we have 
to accept, that we loose valuable second order information by applying convex schemes. 
The possible impact of second order improvements will be diminished. In some ca$es 
we had to drop 50% of all second order derivatives. Primal procedures (e.g. extended 
penalty) do not inherit this precondition and work with all types of approximation. 
The economy is however inferiour to the dual methods. If separibility is adlllitted and 
second order affects are of llIinor importance we IlIay therefor rely Oll thc dual schcmes 
as CP or SQP. 

5. Examples for optimal boundary moves 

Triangular plate 
We start our series of example with a triangular plate (fig. 4) submitted to a line load 
at each corner. We perform optimization with four behaviour models. The generalized 
hybrid scheme with a fixed exponent of 2 belongs to the first order family. As second 
order models we use the generalized power scheme, the generalized method of moving 
asymptotes and the half quadratic scheme. 
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As we may see in fig. 5 the first order generalized hybrid model exposes a very 
optimistic approximation. We gain a high mass reduction after the first loop for the 
price of 5 violated constraints. Via the refreshment steps the model is capable to remove 
these violations. The second order models perform almost identical and are describing 
the structural behaviour with higher quality leading to less significant violations. In the 
final end all approximation candidates are leading to the same optimum design (fig. 6). 

Plate with hole 
Our next example is the well known plate with hole (fig. 7). Making use of the double 
symmetry we optimize only one quarter. All methods perform like in our first example 
with the exception of the generalized method of moving asymptotes. Since in this 
example the second derivatives are comparatively large, the computed asymptotes are 
tightly neighboured to the generation points. Consequently we quickly approach the 
positions of infinite constraint values. This involves a highly conservative approximation 
and thus a slow convergence following a series of feasable designs (fig. 8). The optimal 
design is shown in fig. 9. 

Cube witll cavity 
The next presented example is a three dimensional problem test namely a cube with 
cavity (fig. 10). We also take advantage of the double symmetry. The Fig. 11 shows 
the behaviour of a typical constraint in a progress direction and the approximation with 
different approximation schemes. All models are build up with the same information 
and correspond to the same curvature. As in all test example the generalized MMA is 
also here too conservative. The generalized power and half quadratic schemes are here 
too optimistic which is however not typical for this approximation types. In the most 
cases these two candidates show a similar behaviour being sometimes too optimistic 
and sometimes too conservative. The weight history (fig. 12) demonstrates a high mass 
reduction of the first order model after the first loop, involves however an infeasible 
design. The optimum design (fig. 13) full fills the Kuhn-Thcker condition and reduces 
the wcigth about 21 per cent. 

Efficency 
To compare the first order generalized hybrid with the second order generalized power 
scheme for the presented examples we introduce the efficieny factor. 

n.1 t.1 
e=-*

n.2 t.2 
(32) 

A value greater than 1 indicates the superiority of second order scheme. We receive for 
our examples 

triangular plate e = 0.9375 
plate with hole e = 1.01 

cube with cavity e = 1.08 
Obviously the first example is solved more efficient by first order scheme. In the 

other two cases we have a marginable advantage of the second order schemes. 
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6. Examples for optimal material distribution 

IHangular plate 
In linear static the examples of the genesis of structures correspond to those of OBM 
in the previous section. For the triangular plate we start with identical dimensions and 
a mean density of 70%. The first and second order approximation models lead to the 
same optimal layout showing a convex outer boundary (fig. 14). Additionally a void in 
the center of the plate is generated. Obviously the solutions provided by second order 
models are more accurate as the Kuhn-Thcker-check proves. For the computation of the 
second order derivatives we need one FDS per variable. This extra expense would be 
only balanced, if the number of refreshment loops is reduced at least by one third. In 
the convex second oraer scheme a high portion of non-positiv second order sensitivities 
had to be dropped. The necessary linearizations lead to a badly conditioned redesign. 
The efficient reduction of reanalysis loops could not be achieved (fig. 15). 

Cube with cavity 
We use again the same structure as in OBM (see previous section). However for his
torical reasons the load is 2po in x-direction and Po in y,z-direction. The mean density 
assigned to the design space is SO%. The discretisation embraced 432 brick elements 
(HEXES). The material distribution was computed with first and quasi second order 
approximations. First order models were the power scheme with fixed power and the 
moving asymptote procedure with global asymptote position. For the generation of sec
ond order information the first order sensitivities of two subsequent design loops were 
utilized. As demonstrated in fig. 16 the mass distribution is the same for all approx
imation schemes showing the formation of an elliptic cavity. The redesign step with 
432 variables was very quick. The reduction of objective compliance (fig. 17) is similar 
for all approximation models. The quasi-second order model has no positive effect on 
a better convergence. One reason for that behaviour may be, that local exponents or 
asymptotes do not differ much from the assumed global values in the first order models. 
Another reason may be the high portion of assigned structural mass of 80%. 

Barrier (eigenfrequency) 
Our aim is the design of a barrier foundation (fig. 18), which maximizes the first bending 
eigenfrequency of the system. It is assumed, that the shape of the bar is fixed (density 1). 
The foundation design space is filled with a mean density of 80%. In fig. 19 we give the 
designs obtained for first and second order MMA. Doth designs are essentially the same. 
The second order model supplies a design with a better massiv/empty separation. The 
optimizer needs only one to two iterations to find the maximum for both apprOJ<;imations 
(fig. 20). The second order model will however be only superiour, if it reduces the 
number of iterations by one sixth due to the costly computation of the eigenvector 
derivative. 

Column buckling 
In linear buckling we investigated a flat truss (fig. 21) subjected to a single pressure load, 
whose buckling value had to be maximized. The computation of first order sensitivities 
requires already a. lot of CPU-time, beca.use the geometrical stiffness derivative is stress 
dependent. Thus the second order approach again was based on the cheaper quasi
second order scheme utilizing differences of first order results.As demonstrated in fig. 
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22, the optimized structure accumulates mass at the outside bottom and narrows up 
to the top. At the top we observe some mass accumulation for load diffusion, which 
is marked clearer by the quasi-second order model. In this example the first order 
power scheme shows an oscillating behaviour of the objective function and it has not 
converged after 10 iterations, whereas the quasi-second order power scheme and the first 
order moving asymptotes converge very fast. 

7. Conclusions and outlook 

Analytic (density variables, OMD) and iterative (shape variables, OEM) schemes 
for the computation of second order sensitivities have been developed and tested. Nu
merical second order computations require roughly twice the expense compared with 
that for first order sensitivities, providing also more accurate first order information. As 
assumed second order approximation schemes stabilize the refreshment iteration and re
duce the number of loops and reanalysis cycles. Since for optimal material distribution 
also first order schemes work stable, the benefit is meager. The reduction of model loops 
does not balance the expense for second order sensitivities. We gain only in accuracy 
and in stability for optimal boundary moves, not in effeciency. Therefore second order 
approaches remain a domain for a subset of difficult problems, which tend to be unstable 
or which cannot be approximated separable. For future developments concerning the 
less sensitive realm of problems, it seems more promising to utilize cheap approximate 
second order information exploiting e.g. design history. 
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Abstract 

SHAPE OPTIMIZATION AND IDENTIFICATION OF 2-D ELASTIC 

STRUCTURES BY THE B E M 

Grzegorz Krzesinski 
Institute of Aircraft Technology and Applied Mechanics 

Technical University of Warsaw 
ul.Nowowiejska 22/24 , 00-665 Warsaw 

The shape optimization of two-dimensional elastic structures and 
some inverse problems of elasticity are treated in the paper. Boundary 
element method, spline representation of unknown boundary and nonlinear 
programming techniques are used. Advantages and disadvantages of BEM 
compared with FEM for shape design are discussed. The technique of 
cubic splines boundary approximation provides good shape flexibility 
using relatively small number of design variables. Some numerical 
results illustrating different problems are presented. 

Introduction 

Most of the works on numerical shape optimization are based on 

the FEM formulation ([ 1,2,3,4]). The BEM has been used in this field 

only for the last few years (e.g.[5,6]). The shape design requires a 

FEM model which changes in the course of optimization and this may 

cause some particular difficulties in the solution process ([1,7]). To 

avoid the sometimes drastic distortion of the FEM grid sophisticated 

automated mesh generation techniques may be required ([ 1, 8] ). These 

difficulties with FE formulation can be partially overcome by using 

the BEM. This method usually requires modelling of the boundary only 

and it seems to be well suited for the boundary shape optimization. 

In shape design problems description of a moving boundary plays a 

central role. In many works the coordinates of the boundary nodes are 

used as design variables. In this case the accuracy of the FE model can 

deteriorate and may lead to unrealistic, jagged shape ([1,7]). This 

technique results additionally in many design variables in the 

optimization process. Another approach is the representation of 
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the boundary as a linear combination of shape functions with 

coefficients being the design variables. Splines, composed of low-order 

polynomial pieces are especially suitable for shape desig~ A spline 

representation of the boundary was applied in some works using 

FEM (e.q. [3]). 

In this paper the BEM together with spline approximation of the boun

dary is employed. The presented general statement of the shape optimi

zation problem allows us to solve shape optimization and shape iden

tification problems as well as some inverse questions of elasticity. 

Formulations of the shape optimization problem 

In many engineering problems a boundary shape function f (Fig. 1) 

optimal due to a chosen criterion is required. The problem is described 

by a functional: 

J: 
s 

f ------t c e R 
s 

Fig. 1. The body under consideratio~ 

( 1 ) 

The value of c can represent, for example, maximum Von Mises stress or 

compliance of the structure. To solve the problem of minimization of J 
s 

fs is represented as a function of unknown parameters (design 

variables) i=(x ,X , .. X ). 
1 2 n 

Hence the shape design problem can now be written as a nonlinear 

programming problem for a function F: i ------tc. 

min F(i) (2) 

subject to given geometrical constraints: 

g ~ 0 
I 

h = 0 
J 

i=1,2 ... ,m, 

j=1,2 ... ,k 
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The formulation presented above can be generalized. Let a problem be 

defined by a function transformation: 

( 3 ) 

where v is a function describing e.g. a distribution of reactions or 

boundary displacements. 

Then an inverse problem can be considered: 

Find f·, such that J (f·)=v·, where v· is a given, prescribed function. 
s • T s 

The function v can be obtained from experimental measurement 

(identification problem) or required by the designer. 

Because such the function v· may not exist we solve the modified problem: 

min d(v,v·)= min d(J (f ),v·)= min d(f) = min d(X) (4) 
T s s-

f f f X 
s 

where d denotes the distance between v and v· defined by a metric. 

Using the formulation (4) some identification problems as well as 

optimum design problems in junction and contact can be solved. For 

example, elements introducing a concentrated load into a thin walled 

elastic structures (Fig.2) can be designed so as to avoid strong 

concentration of stresses (force applied in the form of assumed, known 

advantageously distributed load). 

elastic 
structure 

tC _ advantageously distributed load P 

f. '",---< 
..... -..... , ...... , .... ~-=:J 
'-'-'- ~ --"'''' ... "/ ..."..-- ./ 

....... ---' elemclnt introducing a concentrated 
load into a structure 

Fig. 2. Designing of an element introducing a concentrated load 
into the elastic structure. 

An integrated shape design program including BEM analysis, spline 

boundary approximation, nonlinear programming techniques and inter

active graphic presentation was developed ([9). Some special tech

niques were examined e. g. computation with an increasing number of 

design variables. 
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Boundary element method 

The analytical basis of the BEM in 2D elasticity (without body 

forces) is the integral equation ([10]): 

Ckj(~)Uj(~) "f[U:k)(X,~)tl(X) - T:k)(x,~)ul(x)]dr(x) (5 ) 

where x, ~ e r , u and t denote displacement and traction vectors 

respectively (Fig. 1) and ckJ is the tensor dependent on the geometry of 

the boundary at point ~. If the boundary is smooth at ~ then c (~)=8/l kJ kj 

and c =8 if ~ is an interior point of n. 
kJ kJ ( k ) ( k ) 

The kernel functions UI and Tl are the fundamental Kelvin solutions 

for displacements and tractions due to the unit concentrated force in 

an elastic infinite space. 

In order to solve (5) we transform the integral equation to a set 

of linear algebraic relations. The boundary is approximated by a set 

of boundary elements over which u l and tl vary in some assumed 

manner ([10]). The result is given as the system of 2N equations where 

N denotes the number of nodes on the boundary: 

[T] {u} " [U] {pI (6 ) 

where {u} and {pI represent nodal tractions and displacements. 

For mixed boundary-value problems appropriate columns in (6) may be 

swapped in order to obtain 

[A] {y} " {b} (7 ) 

where the vector {y} consists of the unknown nodal values of uland t l . 

In most of the shape optimization problems the objective function is 

determined by the boundary values and there is no need for calculating 

displacements and stresses in the domain. In BEM interior displacements 

and stresses are obtained at those points only where the solution is 

required or in the whole of domain after the application of adequate 

automatic grid generator ([11]). Interior displacements (~en) are 

obtained directly from (5) and stresses from differentiating of (5) and 

application of Hooke~ law. 

The comparison BEM to FEM shows that the BEM usually delivers more 

accurate solutions than the FEM for the same level of computational 

costs, specially if we restrict the results to the boundary ([9], [12]). 

The BEM is well suited to problems with infinite domains and the 

procedures of the method require relatively small operating memory in 

spite of not banded, unsymmetric matrix [A]. 

This method is however less versatile for structural analysis and its 

applicability and efficiency are limited to some particular problems. 
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Representation of the boundary 

A feature of good representation of the moving boundary is to 

provide sufficient shape flexibility using small number of design 

parameters. Shape description with cubic splines, successfully used in 

computer graphics ([13]),seems to be the adequate technique. In the 

simplest way the approximation of the unknown boundary curve is 

as the spline interpolation problem (Fig.3) with the knots (Zl) 

angles at points A i B (0:, (3 ) being design variables X~: 

f (s)= X~ C (s) 
s ~ I 

treated 

and the 

(8 ) 

However this method 

function f in the basis 
s 

corresponds with searching for the shape 

of functions C1 (s), which have a disadvan-

tageous oscillatory character. 

5 

Fig. 3. Approximation of the moving boundary. 

Application of B-splines is more efficient. It enables us to obtain 

the representation: 

f s ( s ) = Xi N I (s ) ( 9 ) 

where functions N1(s) are local and non-oscillatory. 

A local property of the moving boundary (local modifications do not 

propagate) is advantageous and often required in the shape optimization 

techniques Representation of the boundary (9) can be realized in 

cartesian or polar coordinates. The boundary curve is independently 

divided into a set of boundary elements. 

Examples of application 

Optimization of a shape of a hole in a plate (Fig. 4) 

The aim of the design is to find the best possible shape of a hole in 
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an infinite plate under a biaxial stress field (U l ,U2 ) minimizing the 

maximum Von Mises equivalent stress UTed in the structure. This clas

sical test problem was solved to examine the effectiveness and accuracy 

of the numerical algorithms. 

Only the quarter of the plate Xl~O, x2~O ) is modelled. The hole is 

described by 4 design variables in polar coordinates. The moving part 

of the boundary is divided into 24 elements. The distribution of UTed 

along the boundary for the initial shape is showed in Fig.4(a) and for 

the final shape in Fig.4(b). In the presented case (u 2 =O.5U l ) the 

result of computation is u max =1.52 U (known analytical result 1.50Ul ). 
red 1 

(0) 
initial circular shape .. 

( b) 

" --~ .. 
I 

j" - ..... . iM 
,.. -j" 
;.--,,, 

final desi9n 

~~.uu 
6re P 1.52 6, -.... 2;~~ .. " II ," U 

a ~.r~.~' __ .' __ ~_~ __ ~' 

Fig. 4_ Optimization of a hole in a biaxial stress field. 

Designing of a reinforcement of the circular hole in a plate (Fig.5) 

This example is based on the generalized formulation (4). The aim of 

the design is to find a shape of external boundary of a plate 

reinforcement. The reinforcement is joined on its internal circular 

boundary with the plate in order to avoid the stress concentration in 

the plate around the hole. 

shape for which in 

The ideal solution would be such a boundary 

the plate there was no concentration of 

stresses (constant state ~f stress U l ,U2 ), In this case we can define 

corresponding tractions tl and displacements u; on the circular line AB 

which define the best interaction between the plate and the 

rei nforcement. 

The optimization consists in finding the shape function fs' which 

produces displacements ~ on the curve AB and satisfies the condition 

min(d(u,u')). In the case presented in Fig.5(c) (3 design variables) 

the result is d"ln=O.012do' where d denotes the val ue of d for the 
o 
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initial circular shape. The thickness of the reinforcement was 

assumed as h =4h 
rep 1 

It was verified that the corresponding 

concentration factor was reduced from 1. 37u 1 to 

(0) 
6, 

0+-

-

(c) I 

tltflttt162 
61 

(b) X2 
)( --- u,:O ---

XJ --.-.. 

final shope and distribution of u, on the boundary 

(02 = 0 ) 

""," 

( 
....... 

....... 
. ' 

.... ~" ...... 

':"" 

\ 

\""/" 

·\~~if~ ....... \:, 
;.., ........................ _-------_ ............. . 
, .......... , ... ; .... : .... ; ..... ; ..... , ......... ... : ....... :. ....... i ......... ; ........... :. ..... _ .... : 

Fig. 5. Optimum design of the reinforcement of the hole. 

Identification of unknown load applied to a structure (Fig. 6) 

stress 

In this case, based on the formulation (4), design variables control 

unknown distribution of load which produces known distribution of 

displacements. In the 

(parabolic) load acts 

presented example 

on the upper part 

(Fig. 6) 

of the 

the identified 

boundary. The 

displacement u 2 on the lower part of the boundary is known. Fig. 6 

presents the identified load and its distribution which results from 

optimization (5 design variables). 
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identified load distribution 

~~~~~~--------------~TB 
~~~~~-Po T 

• i • I 

~ 
result of identification 

A ... ________________ ~ __ ----~~.,----~ .. ~.d~ .. ~ .. ;~ ... ~.~~.;.~.~ ..... ~. ____ 8 
'. . ..... 

.... : ... . ~.«::==-.~.,= .... -"'-- 0.91 Po 
...... 

Fig. 6. Example of load identification. 

All examples were calculated on an IBM-PC using linear boundary elements. 
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Applications of the COC Algorithm in Layout 
Optimization 

G.I.N. Rozvany and M. Zhou 
Fachbereich 10 (Bauwesen), Universitiit Essen, Postfach 10 37 64, 

D-4300 Essen 1, Germany 

ABSTRACT. Whilst the advantages of iterative continuum-based optimality criteria (CO C) 
methods in cross-section optimization ("sizing") were discussed elsewhere (e.g. [4,5]), this paper 
is devoted to applications of the above technique in layout optimization. Earlier studies of the 

latter field by others used a two-stage process consisting of separate topological and geometrical 
optimization and considered only a very small number of members. It will be shown here 
that the COC algorithm achieves a simultaneous optimization of the topology and geometry 

in layout problems with many thousand potential members. Moreover, some observations on 
shape optimization by the "homogenization" method are offered and an alternative approach to 
global shape optimization is suggested. 

1. Introduction 

One of the basic difficulties in structural optimization at present is the considerable 
discrepancy between the anqlysis capability (104 - 105 DF's) and optimization capability 
(a few hundred DF's) of currently available soft- and hardware, if primal-type math
ematical programming (MP) methods are employed. It was shown recently that an 
optimizer based on iterative continuum-type optimality criteria (CO C) methods could 
handle several million variables if a suitable analyser were available for systems of that 
magnitude. This means that the COC technique not only eliminates but even reverses 
the above discrepancy. In the present paper, applications of the COC methods to layout 
optimization are considered and potential extensions to global shape optimization are 
outlined. 

2. The Theory of Optimal Layouts 

The above theory was developed in the late seventies by W. Prager and the first author, 
and extended considerably by the latter in the eighties. It is based on two underlying 
concepts, namely: 
• continuum-based optimality criteria (COC), which are necessary (in convex problems 

also sufficient) conditions for cost minimality, and 
• the structural universe (also called in the literature "basic structure" or "ground 

structure"), which is the union of all potential members. 
Some of the above optimality criteria are usually reinterpreted in terms of a fictitious 

or "ad;'oint structure" as equilibrium, compatibility and strain-stress relations. Since 
they also give an adjoint strain requirement (usually an inequality) for vanishing or 
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non-optimal members (of zero cross-section), satisfaction of all optimality criteria for 
the entire structural universe ensures layout optimality in convex problems. 

The original, or classical layout theory considered structures of low material-vol
umeJdomain-volume ratio (termed "volume fraction"), such as trusses, grillages, arch 
grids and cable nets. In these structures the effect of the member intersections on 
strength, stiffness and structural weight is neglected and the specific cost per unit area 
or volume is therefore the sum of the specific costs of the members in various directions. 

In the so-called advanced layout theory, the volume fraction is relatively high and 
hence the above simplifying assumption is unjustified. Considering a two- or three
dimensional solid, the optimal solution usually consists of three types of regions, namely: 
(a) solid (black) regions filled with material, (b) empty (White) regions, and (c) perforated 
(grey) regions having a very fine system of cavities. The microstructure of the latter is 
usually first optimized locally and then the layout of the corresponding ribs or fibres is 
optimized on a macroscopic scale [1, 21. 

3. Iterative COC Methods Based on the Classical Layout Theory 

In order to illustrate this procedure with a simple example, the equations of optimal elas
tic design for a single deflection constraint are given in Fig. 1, in which Q = (Ql,"" Qn) 
are generalized stresses (stresses or stress resultants), q are generalized strains, pare 
loads, u are displacements, xED are spatial coordinates where D is the structural 
domain containing all potential member centerlines, 81 and 82 are subsets of D, z 
are cross-sectional dimensions, t/I(z) is the "specific cost" where the "total cost" to be 
minimized is 4> = JD t/I(z) dx. Quantities having an overbar are associated with the 
adjoint system. The symbol 9 denotes a generalized gradient which, however, reduces 
to the usual gradient operator for differentiable functions, e.g. g,z [t/I(z)1 = gradt/l = 

(at/l/aZh.'·' at/l /azr ). 

The above optimality conditions have been derived using the calculus of variations 
and represent an exact optimal solution. However, for large, real systems an analytical 
solution of the equations in Fig. 1, in general, cannot be obtained. 

The iterative COC method solves the above equations using the following two steps 
in each iteration: 

(a) analysis of the real and adjoint structures in a discretized form using an FE pro
gram; 

(b) resizing (i.e. evaluation of the cross-sectional dimensions zii) for given values of 
the generalized stresses Qi and Qi' 

A comprehensive set of optimality criteria for various combinations of design con
straints and geometrical restrictions is given in a recent book [31 by the first author. 

In the iterative COC procedure, it is necessary to prescribe a minimum value for 
each cross-sectional parameter zii of each element i. In layout optimization, a very 
small value (usually 10-12) is adopted for these lower limits. 

For a detailed description of the COC procedure, the reader is referred to previous 
publications of the authors [4, 51. 
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Fig. 1 Fundamental relations of optimal elastic design with a deflection constraint. 

4. Applications of the Classical Layout Theory 

4.1 Analytical Results 

The layout of least-weight trusses was studied already around the turn of the century by 
Michell [6], but relatively few exact analytical solutions were established until recently. 
On the other hand, the layout of least-weight beam systems (grillages) has been deter
mined for most boundary and loading conditions in a closed analytical form (e.g. [7, 
8]) and even a computer program has been developed for deriving by purely analytical 
operations and plotting the optimal grillage layout [9]. In addition, closed form ana
lytical solutions were determined for arch-grids and cable nets (e.g. [10]), even for the 
combination of external load and self weight. Quite recently, a systematic exploration 
of least-weight truss layouts for various boundary conditions was carried out (e.g. [11]). 

4.2 Numerical Results by the eoe Method: Test Examples 

4.2.1 Vertical and Horizontal Supporting Lines with a Point Load 

The first truss layout investigated by the iterative COC method is shown in Fig. 2a in 
which thick lines indicate optimal members. All other members took on a cross-sectional 
area of 10-12 , except for members "a" and "b" which were < 3 X 10-12• The COC 
solution agreed with the analytical solution to a twelve digit accuracy. The adjoint field 
associated with the exact solution, which was found later [l1J, is shown in Fig. 2b. 



www.manaraa.com

L 

L 

L 
a 

b 
L 

L 

L 

L 

\. L .1 L .. \ 
(a) 

62 

M 
W 

U=O 

u = 2x 

.o .... U =: 0 

v =-y 

o 
x 

/ 

Fig. 2 The first layout problem investigated by the iterative COC method. 
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(b) 

Fig. 3 Exact and iterative COC solutions for a layout consisting of a Hencky net. 

4.2.2 Vertical Point Load and Vertical Supporting Line of Limited Length 

The analytical solution for this problem was discussed by Hemp [12] and is shown in Fig. 
3a. The optimal solution obtained using the iterative COC method with 5055 potential 
members is shown in Fig. 3b which represents 0.76% greater structural weight than the 
exact solution. With 12992 members, this error reduced to 0.46%. 

4.2.3 Simply Supported Truss with a Point Load 

Figures 4a-d show one half of a COC solution for a truss with a central point load and 
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Fig. 4 A comparison of a truss layout and a plate of variable thickness obtained by the eoe 
method. 

two simple supports and various ranges of cross-sectional areas. For a comparison, Figs. 
4e-i show the COC solution for a plate of variable thickness (t) with the same support 
conditions and loading. 

4.2.4 Optimal Truss for Two Alternate Load Conditions 

Figure 5 shows the COC solution for two alternate loading conditions and compliance 
constraints using 7170 potential members in the structural universe, part of which is 
shown in the top right corner. The analytical solution consists of two bars (broken 
lines in Fig. 5) which the numerical solution tries to attain with a limited number of 
admissible member directions. While the above solution represents a 3.495% weight 
error in comparison with the analytical solution, an improved COC run with 12202 
members gave an error of only 0.0198% and consisted mostly of heavy cross-sections 
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Fig. 5 Iterative COC solution for two alternate loads and part of the structural universe. 

along the two bars in the analytical solution. 
The authors were informed during the meeting in Karlsruhe that in an unpublished 

symposium paper Bends~e and Ben-Tal [18], who used a different method, also presented 
optimal truss layouts involving several thousand potential members. 

5. Shape Optimization by Homogenization 

It was mentioned in Section 2 under advanced layout theory that in shape optimization 
one type of region, termed perforated (grey) region, contains a fine system of cavities or, 
theoretically, an infinite number of internal boundaries. A similar result was obtained 
in plate optimization where optimal solid and perforated plates were found ([17, 191, 
see also [1, 2, 13]) to contain systems of ribs of infinitesimal spacing and hence the 
thickness function has an infinite number of discontinuities over a finite width. Although 
the material in these problems is isotropic, the "homogenization" method consists of 
replacing ribbed or fibrous elements with homogeneous but anisotropic elements whose 
stiffness or strength is direction- but not location-dependent within the element (e.g. 
[19]). 

From a historical point of view, the basic idea of homogenization was introduced 
already by Prager and the first author (e.g. [7, 8]), although they used the terms 
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homogenization (al 

two-stage process (b) 

eoe (e) 

modified homogenization (d) 

Fig. 6 (a, b) Simplified topology derived by Olhoff and Rasmussen for the problem treated 
in Fig. 4, (c) the exact topology suggested by COC layout solutions, and (d) solution 
obtained by a modified homogenization method (see Section 5.1). 

"grillage-like continua" and "truss-like continua". In these structures, a theoretically 
infinite number of bars or beams occur over a unit width but the above authors replaced 
this system with a continuum, whose specific cost, stiffness and strength depended on 
the "lumped" width of the bars or beams over a unit width. This concept was clearly 
equivalent to homogenization, but without considering its mathematical implications. 
Applications of homogenization in global shape optimization were discussed in mile
stone contributions by Bends!6e (e.g. [14]) which represent one of the most important 
recent developments in structural optimization. 

Returning now to the shape optimization of a perforated plate in bending or in plane 
stress, various mathematical studies suggested that the optimal microstructure consists 
of ribs of first- and second-order infinitesimal width in the two principal directions, if 
the structure is optimized for a given compliance. The stiffness and cost properties of 
this microstructure were discussed in papers by the first author, Olhoff, Bends!6e et aI. 
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Fig. 1 Simplified topology obtained by Kikuchi for the problem treated in Fig. 3. 

[1, 2]. For a zero value of Poisson's ratio, for example, the non-dimensionalized specific 
cost becomes 

(1) 

where 81 and 82 are the non-dimensionalized stiffnesses in the principal directions. The 
above formula, for example, gives tP = 1 for 81 = 82 = 1 (solid or "black" regions) 
and tP = 0 for 8 1 = 82 = 0 (empty or "white" regions). On the basis of the specific 
cost function in (1), analytical solutions were obtained for axisymmetric perforated 
plates [1, 2]. Naturally, the same cost functions could be used for numerical shape 
optimization, and should give the correct solution for plates in plane stress or bending. 
This development is pursued currently by the authors. 

The main aim of the investigations by Bendsjije [14] and Kikuchi [15] is to come up 
with a practical topology, in which the perforated ("grey") areas disappear and the 
optimal structure consists of solid ("black") and empty ("white") regions only. This 
procedure can be seen from Figs. 6a and b, in which Olhoff, BendSjije and Rasmussen [16] 
first determined the approximate optimal topology (Fig. 6a) for the support condition 
and loading considered in Fig. 4, and then carried out a separate shape optimization 
(Fig. 6b) for the more detailed design conditions. This "homogenization" method, 
indeed, gives negligibly small perforated (grey) areas, as can be observed in Fig. 6a, and 
also in Fig. 7 which was obtained by Kikuchi [15] for the load and support conditions 
in Fig. 3. The latter seems to give the same topology, irrespective of the number of 
elements (N) employed. 

The following circumstantial evidence seems to indicate that the exact optimal 
topologies differ from those obtained by the homogenization method (e.g. Figs. 6b, 
7): 

• In the analytical solutions obtained for perforated plates [I, 2], a high proportion of 
the plate area is covered by perforated (grey) areas . 

• It was shown previously [I, 2] that the solution for very low volume fractions tends 
to that for grid-type structures (Michell frames or least-weight grillages). This was 
also observed by Prager who commented on some optimal solid plate designs by 
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Cheng and Olhoff [171. It was also noted [11 that, as the volume fraction increased 
progressively in analytical solutions, solid (black) regions developed in areas where 
the ribs in the perforated regions had the greatest density. Making use of this obser
vation, the grid-type solutions in Figs. 4a-d imply the topology in Fig. 6c (graphics 
by Dr. Gollub), in which the width of the solid regions is based on the cross-sectional 
areas of the "concentrated" bars along the top and bottom chords of the truss. The 
spacing of the members in the perforated region is theoretically infinitesimal, but a 
finite number of members would have to be used in any practical solution. In the 
neighbourhood of the top right corner, we have an empty (white) region. It can also 
be observed that the "homogenized" solution in Fig. 6a tries to achieve the solution 
in Fig. 6c, except that in areas of low rib density (e.g. right bottom region inside the 
chord) it comes up with empty regions. As Bends~e pointed out in Karlsruhe, this 
can be attributed to the fact that here non-optimal microstructures were used for 
the perforated (grey) regions. Whilst this does not change the cost of solid (black) 
and empty (white) regions, it does increase artificially the cost of perforated (grey) 
regions and hence it tends to suppress the latter. 

• The solutions for plates of varying thickness represent an "isotropized" version of the 
exact solution. This can be observed by comparing Figs. 4e-i with Fig. 6c. The plate 
thickness in the former is roughly proportional to the average material density over 
the latter, with ribs occurring in Figs. 4e-i along the solid regions of Fig. 6c. This 
is a further confirmation of the improved topology in Fig. 6c. Moreover, a modified 
isotropized homogenization method (Section 5.1) fully confirmed the solution in Fig. 
6c, as can be seen from Fig. 6d. 

Remark. The contention that existing homogenization methods give a simplified topol
ogy compared to the exact solution by no means represents a criticism of these extremely 
important techniques. Such "condensed" topologies are in fact very practical because, 
naturally, it is impossible to use an infinitesimal bar spacing in real structures. However, 
the exact optimal topology can also be of practical significance, because the client could 
be told by the designer that furthe. weight savings can always be achieved by increasing 
the number of "holes" in the design and then former could decide as to how far he can 
go within realistic manufacturing capabilities. 

5.1 An Alternative Method for Suppressing Perforated (Grey) Regions 

Since the use of non-optimal microstructures homogenized into an anisotropic contin
uum introduces some unknown penalty for "grey" regions into shape optimization, the 
perforated (grey) regions could also be suppressed by using an isotropic microstructure 
but with a suitable penalty function for such regions. This can also be justified on 
practical grounds, as can be seen from the argument that follows. 

As a first approximation, we could assume that the specific material cost (i.e. weight) 
is roughly proportional to the specific stiffness of perforated regions (Fig. 8a, which is 
also valid for plates of variable thickness). On the other hand, the extra manufacturing 
cost of cavities would increase with the size of the cavities if we consider a casting 
process requiring some sort of formwork for the cavities (Fig. 8b). Note that for empty 
(white) regions with s = 0 the manufacturing cost also becomes zero. The specific 
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Fig. 8 Suppression of "grey" regions in isotropized solutions. 

total cost and its suitable approximation is shown in Fig. Bc. The use of the above 
type of cost function promotes the suppression of perforated (grey) areas in isotropized 
designs which require onIy one design parameter (s) per element. The introduction 
of orthogonal cavities in the usual homogenization process [14, 15] requires 3 design 
variables per element for two-dimensional systems and 6 variables for three-dimensional 
ones. The solution in Fig. 6d was obtained with an n-value of 1.B6 in Fig. Be, and 
represents a topology closer to the "exact" optimal design than the design in Fig. 6b. 
As expected, simpler topologies can be obtained by adopting a higher n-value (Le. by 
increasing the penalty for grey regions). 

Conclusions 

• The iterative eoe method enables us, probably for the first time in the history of 
structural optimization 

(a) to optimize simultaneously the topology and geometry of grid-type structures 
(trusses, grillages, shell-grids, etc.), 

(b) for any combination of the usual design conditions (stresses, displacement, natural 
frequency, stability, etc. constraints), 

(c) using a fully automatic method capable of handling many thousand potential 
members . 

• Shape optimization by "homogenization" is essentially a numerical approximation of 
the solutions furnished by the "advanced layout theory". The discretization errors 
in topologies obtained by this method can be assessed by a comparison with eoe 
solutions for grid-like systems (e.g. Figs. 4a-d) or for "isotropized" systems (e.g. 
Figs. 4e-i). With a suitable penalty formulation, the latter could also be used for 
suppressing perforated (grey) regions in shape optimization. 
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Shape Optimization in Machine Tool Design 

M. Weck, W. Sprangers 
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Germany 

Abstract: Combining finite eleme~t analysis with optimization 
algorithms in optimization systems allows the design of ma
chine tools to be distinguished by a maximum stiffness at the 
point of processing, optimum stress distribution on fillets, 
or a minimum weight for highly accelerated machine components. 
This lecture is intended to give an insight into the specific 
problems of optimizing the shape of machine tool components 
and the current work being done in this area at the chair of 
machine tools at the University of Aachen. 

Introduction 

In the ·field of machine tool design, depending on the applica
tion of the machine, different design objectives must be ful
filled. The finishing accurancy is the most important quality 
feature of a cutting machine and, therefore the stiffness at 
the point of processing becomes the main objective of design. 
In the design of machines finite element analysis is generally 
used today. Structural optimization is also becoming more and 
more important as the requirements for finishing precision and 
productivity increases. In addition, the pressure on the mar
ket and the lack of development time give structural optimiza
tion systems growing importance to preserve the competition of 
a company. 
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structural optimization in machine tool design 

In machine tool design the most important objectives are/l/: 

- maximum stiffness at the point of processing 
- minimal component weight 
- smooth stress distribution on fillets or notches 
- maximum natural frequency 

The optimization aim of maximum stiffness at the point of pro
cessing of a machine tool is the most important objective 
function. A machine tool's main components usually have thin 
wall thickness and, therefore, can be built up with shell ele
ments. In an optimization process the thickness of these ele
ments are changed continuously or discretly depending on the 
production technology of the component (casting or welding). 
The design aim for highly accelerated machine parts is minimal 
weight in order to reduce the loads on the drive units. Here, 
fiber reinforced materials with low weight and high stiffness 
are becoming more and more important. By optimizing the angles 
of the fibers and the thickness of the layers a design with 
maximal stiffness and minimal weight can be generated. 
Beside these sizing problems, shape optimization is also used 
in machine tool design: for example, the optimization of the 
stress distribution in fillets and notches and the minimum 
weight design of solid parts (eg. a machine tool base made of 
reaction resin concrete). This lecture will concentrate on the 
shape optimal design of machine tool components along with 
discribing current systems and optimization results. 

Shape optimal design 

In shape optimal design systems the description of the geom
etry that must be changed plays a very important role. The 
following requirements are imposed on these descriptions: 
- a small number of design variables 
- allowance for large changes in shape 
In the case of the minimization of stress peaks in notches and 
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following these requirements cubic splines are used to de

scribe the curve which has to optimized. 
In the three dimensional case, the system developed at the WZL 
uses geometry elements for the optimization. 

Minimization of notch stress in plain and rotationally sym
metric structures. 

The aim of this optimization is the minimisation of stress 
peaks on fillets and notches. Fig. 1 gives some optimization 
examples and shows the method in more detail. 
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Fig. 1: Notch stress minimization, plain and rotationally 

symmetric case 

The interesting curve is modelled by a spline with the pos
sibility of defining a slope at the end knots to fit the curve 
in the structure. The formulation of a polar coordinate system 

where the angles to the points are fixed, leads to a 
parametriC form for the optimization algorithm. 
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Based on the notch stress theory and the work of Neuber and 
Schnack, the mechanical problem is changed to a geometrical 
problem /2,3,4/. The solution to the optimization problem is 
done with the least squares algorithm /5/. 

Minimization of the stress peaks in a pinion shaft. 

In this example, a pinion shaft ( a rotationally symmetric 
part) is optimized. Fig. 2 shows the CAD representation of the 
shaft and the finite element mesh. Only half of the structure 
has to be modelled because rotationally symmetric elements 

with asymmetrical loads are used. The interesting detail of 
this part is the offset of the axes with the undercut where 
the finite element analysis locates the highest stress peaks. 
In an optimization the shape of the undercut is changed to re
duce the peaks. 
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Fig. 2: Optimization of the undercut of a pinion shaft 
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Fig. 2 compares the stress distribution on the edge before and 
after the optimization. The change in shape is detailed in the 
right part of the figure. The stress peaks were reduced by 
16%. 

Optimization of solid structures 

In the second part of the lecture a system for the shape op
timum design of solid structures is presented. The aim of this 
optimization system is the weight minimisation or stiffness 
maximization under displacement, stress or geometrical con
straints. In this system geometric elements are used for 
description of the shape. 

geometric element method--------
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Fig. 3: Shape optimal design of solids 

Fig. 3 shows the geometric elements available in the system. 
Four of these elements are defined by the coordinates of their 
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pOints and the shape function, the fifth element also needs 
the slope directions at the points /6,7/. The coordinates and 
the slope directions may be design parameters in the opti
mization which is done with the SQP method from powell /8/. 

Weight minimization of a machine tool base made of reaction 
resin concrete 

Machine tool parts made of reaction resin concrete, e.g. a ma
chine tool base (fig. 4), must be described with hexaedron el
ements in order for carry out the finite element analysis. In 
this optimization the structural volume is to be minimized. 
Fig. 4 shows the model of the base build up with geometry ele
ments. The loads and restraints or the finite element model 
are given in the middle of fig 4. In the optimization the 
shape of the hole of the base is changed by 10 design vari
ables, xl to xlO, whereby displacement constraints and 
geometrical constraints must be fulfilled. 

initl ...... ~:IOOmm 

0.42 

} 0." 
0 

i ::: 
0.34 

!OIIIl.1IIIiOII 
max.~: 2.' I'm 
max. "aII~: 150 mm 
min ..... Ihic:IvIeu : 100 mm 

hIstoryol1he OP'moz-.. 

10 20 

11_""",,* 

Fig. 4: Optimization of a machine tool base made of 
reaction resin concrete 
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The result of this optimization is shown in the lower part of 
fig. 4. The thickness of the side walls, the front and back 
plates and the ground plate were reduced. The top plate has 
increased in thickness. The structural volume was reduced 
by 18%. 

Conclusion 

The motivations for using optimization systems in the design 
of machine tools are the increasing precision requirements and 
productivity and the decreasing of development time. Shape 
optimization is one of the manifold possibilities for the so
lution of a design problem. Problem oriented systems are a 
good choice f?r effective optimization calculations as the 
examples presented in this lecture have shown. 
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SUMMARY AND INTRODUCTION 

In many cases, design problems are governed by both static and 
dynamic constraints, where for the latter case engineering ex
perience and feeling is often less evolved. In addition, the 
more challenging design variables are those for structural sha
pe or the selection of proper types of design elements instead 
of only cross-sectional areas or plate thicknesses. In this 
paper some strategies and applications of optimal shape design 
will be presented which specifically include dynamic response 
constraints. 

Concept of Software 

The underlying software approach aims at the solution of gene
ral problems in structural optimization. Objective and con
straint functions may depend on any results from statics, 
eigendynamics, buckling and combinations (e.g. statics + dyna
mics). Potential design variables are not only dimensioning 
parameters, but also shape parameters and material property 
parameters including orientation angles and layer thicknesses 
of laminates. The related software package OPOS can be identi
fied as a data management system to provide the communication 
between software of optimization algorithms, stand along struc
tural analysis and sensitivity, objective and constraints eva
luation and potential further support routines (see Fig. 1). 
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The interfacing problem between OPOS and the analysis program 
(usually a FEM code) is solved in a peripheral way. That means 
OPOS does not require interface data in special formats but 
interprets the formatted I/O files of the analysis program 
(USPRG in Fig. 2). Actually in use are the FEM programs ASKA, 
PERMAS and SAP and an analysis code for axisymmetric shells 
called BOSOR. 
OPOS reads in an initial step a typical input and output file 

of USPRG which fi~ to the actual structural problem. The user 
has to lable in these files all places where variable values 

have to be inserted or where response values have to be read 

from, respectively. Using those information OPOS generates the 

actual input file for USPRG with the variable values inserted 

at all function evaluation steps within the optimization loop. 

The required response values for objective and constraints eva
luation are then read from the actual output file (see Fig. 2). 

This data communication concept yields a very high degree of 
generality in the definition of an optimization problem because 
any analysis (e.g. FEM) input data is a potential variable. 

Their dependency on the design parameters is defined in the 

user routine XFUNC (see Fig. 3) in terms of an arbitrary alge
braic relations. On the output side any analysis response data 

can be used to evaluate the objective and constraint functions 

via the user routines OBJUS and RESUS (see also Fig. 3). 

With respect to a general approach the gradients are calculated 

via finite differences. For that OPOS requires perturbed func

tion values, which can be provided via either a complete reana

lysis or a perturbation approximation. The latter approach is 

based on a semianalytic approximation in statics or a modal 

subspace approximation in dynamics. These perturbation analysis 

are used with the FEM codes ASKA or PERMAS to provide the sen

sitivity data. 

The optimizer implemented in OPOS is the program ADS [1] which 
offers a wide spectrum of optimization strategies (e.g. direct 
solution, sequential linearization, sequential quadratic pro
gramming) and algorithms (e.g. Flatcher-Reeves, Davidon
Fletcher-Powell, BFGS for unconstrained problems and the method 
of feasible directions for constrained problems) . 
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Method of Shape Update 

It is obvious for a number of reasons that a general approach 

for shape optimization with FEM should not take directly the 

nodal coordinates of the mesh as independent design variables 

but vary them dependent on a relative small number of shape 

parameters si. Each of these shape parameters is related to a 

nodal displacement set which will be called a shape mode Wi. 

The shape parameter values together define a linear combination 

of the shape modes which is the resulting shape variation Q. 

u (1) 

The new nodal coordinates ~ of the modified mesh result from an 

addition of the shape variation Q to the old coordinates x· 

x x· + u (2) 

The crucial point of the outlined approach is the evaluation of 

the shape modes ~i. This is done in OPOS by standard FEM algo

rithms based on an idea of Rajan and Belegundu [2]. For this 

purpose the actual FEM mesh of the structure is copied into a 

so called dummy mesh with nodal point geometry and topology un

changed. A shape mode is now generated from this dummy mesh 

(see Fig. 4) by a static deformation analysis with boundary 

conditions and loads defined by the user. Each of these dummy 

load cases generates one shape mode. It is further obvious that 

the dummy static analysis has to be performed only once and for 

all in an initial step. Inside of the optimization loop one has 

simply to combine the modes linearly according to formula (1). 

The shape mode method as described above is a general approach 

for updating of FEM meshes. Internal nodes are moved automati

cally in a natural way and hence mesh degenerations are at 

least postponed. The limitations are no changes in mesh topo-
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dummy mesh with shape 
design parameters s 

Fig. 4: Dummy load case for generation of shape modes 

logy and moderate shape variation until extreme element dis tor

sions will spoil the results. In these cases the optimization 

has to be interrupted and restarted after remeshing. 

Applications 

The applications with OPOS cover a wide range of problems due 

to the already outlined generality of the software. Spacecraft 

automobile and mobile bridges are the main fields of applica

tion and the related optimization problems to be solved requi

red a large flexibility in the problem definition. 

Two examples with shape design variables are described in the 

following. 

Example 1 

The automobile parking latch which is outlined in Fig. 5 repre

sents a 2D shape optimization problem. Variable parts of the 

contour are plotted in dashed lines. The aim is to minimize the 

stress peak in the notch due to a load at the contacts surface 

of the tooth. The constraints are geometrical limits of contour 

variations. 
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Figure 6: Optimized contour 

Figure 8: Shape Mode No. 3 
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Fig. 7 and Fig. 8 show two of totally 5 shape modes for mesh 
updating purpose. The mode in Fig. 7 represents a linear varia

tion of a variable boundary part and has been generated via 

prescribed boundary displacements as dummy load case. The mode 
in Fig. 7 is one of 4 variations of the curved boundary part. 

These modes have been generated by distributed normal boundary 

forces as dummy load cases. The initial and the optimized con
tours are outlined in Fig. 6. The applied optimization strategy 

was a direct solution with the method of feasible directions 
[1]. The stress peak could be reduced by 25 % in 7 optimization 

steps. 

Example 2 

A 3D shape optimization is requested in the design of rubber 

parts of an automobile bearing (see Fig. 9). The objective is 
to maximize the fundamental eigenfrequency of such a rubber 
part with stiffness properties to be held fixed. But the con

straints turned out to be too restrictive to allow a signifi

cant change in the objective. Hence only upper bounds for the 
stiffness were defined for demonstration purpose. 

Fig. 10 shows the 6 shape modes which were all generated by 

dummy load cases in terms of prescribed boundary displacements. 

The resulting optimized shape of the rubber part is outlined in 

Fig. 11. The related change of the frequency objective can be 

read from the the diagram in Fig. 12. There are two jumps in 

the objective curve which indicate an approximation update for 

the frequency evaluation. This evaluation is based on a modal 

subspace approximation within each of the optimization cycles. 

The approximation subspace is defined by the 10 lowest eigen

modes evaluated at the beginning of each optimization cycle. 
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Abstract - Recent results from sensitivity analysis for strain energy with anisotropic elasticity are 
applied to thickness and orientational design of laminated membranes. Primarily the first order 
gradients of the total elastic energy are used in an optimality criteria based method. This 
traditional method is shown to give slow convergence with respect to design parameters, although 
the convergence of strain energy is very good. To get a deeper insight into this rather general 
characteristic, second order derivatives are included and it is shown how they can be obtained by 
first order sensitivity analysis. Examples of only thickness design, only orientational design and 
combined thickness-orientational design will be presented. 

1. INTRODUCTION 

Design with advanced materials, such as anisotropic laminates, is a challenging area for 

optimization. We shall here restrict ourselves to plane problems, as in the early work of 

ilANICHUK [1] (which includes further early references). Recent work by the author [2],[3] was 

conducted independently and the formulations are rather parallel. Similar research is carried out 

by SACCIII LANDRIANI & ROVA TI [4]. In the present paper we combine these orientational 

optimizations with thickness optimization. The further goal is to get a deeper insight into the 

redesign procedures based on optimality criteria. 

The sensitivity analysis that proves local gradient determination relative to a fixed strain field is 

presented. The physical understanding of these results have many aspects outside the scope of the 

present paper. The early paper by MASUR [5] includes valuable information about this sensitivity 

analysis. 

For orthotropic materials, a single optimization parameter controls the orientational design. This 

parameter includes information about material as well as about the state of strain. It is used as an 

optimization criterion and in principle, the optimization procedure is a non-gradient technique. In 

this way local extrema are avoided. 

When the principal axes of an orthotropic material are equal to, say, the principal strain axes, it 

follows directly that principal stress axes also equal those of material and strain. However, 
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optimal orientations exist for which the principal axes of material differ from those of the 

principal strains. Even for this case it is proved in [3] that the principal axes of stress equal those 

of the principal strains. 

The sensitivity analysis for thickness change is extended to include the mutual sensitivities, i.e. 

change in energy density with respect thickness changes not at the same point. A symmetry 

relation is proven. 

A number of actual examples will be shown and discussed, but are not included in this short 

Conference paper. 

2. SENSITIVITY ANALYSIS FOR ENERGY IN NON-LINEAR ELASTICITY 

Let us start with the work equation 

W + We = U + Ue (2.1) 

where w,we are physical and complimentary work of the external forces, and U,Ue are 

physical and complementary elastic energy, also named strain and stress energy, respectively. 

The work equation (2.1) holds for any design h and therefore for the total differential quotient 

wrt. h 

dW + dWe _ dU + dUe an (I'1l- an an (2.2) 

Now in the same way as h represents the design field generally, ( represents the strain field and 

u represents the stress field. Remembering that as a function of h,( we have W,U, while the 

complementary quantities We,Ue are functions of h,u. Then we get (2.2) more detailed by 

oW + OW o( + oWe + oWe au _ aU + aU oc + oUe + oUe au an 7J( OIl Oll (J(J on - on 7f( OIl on 7JiT on 

The principles of virtual work which hold for solids/structures in equilibrium are 

(2.3) 

(2.4) 

for the physical quantities with strain variation and for the complimentary quantities with stress 

variation we have 

OWe oUe 
(J(J = 7JiT (2.5) 
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Inserting (2.4) and (2.5) in (2.3) we get 

(2.6) 

and for design independent loads 

[~] fixed = - [~] fixed 
streS&e6 strains 

(2.7) 

as stated by MASUR [51. Note that the only assumption behind this is the design independent 

loads {)W / fln = 0, {)Wc / fin = 0 . 

To get further into a physical interpretation of (OU/fIn)fixed strains (and by (2.7) of 

(OUC / fln)fixed stresses) we need the relation between external work W and strain energy U. Let 

us assume that this relation is given by the constant c 

W=cU 

For linear elasticity and dead loads we have c = 2 and in general we will have c > 1 . 

Parallel to the analysis from (2.1) to (2.3) we based on (2.8) get 

{)W + {)W Of _ C oU + c oU Of on TJT 7Jfi. - on "lJl7Jfi. 

that for design independent loads oW / fln = 0 with virtual work (2.4) gives 

and thereby 

dU oU oU Of 1 [OU] an = on + "lJl7JIi. = l-c on fixed 
strains 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Note, in this important result that with c> 1 we have different signs for dU/dh and 

(OU/8h)fixed strains. 

For the case of linear elasticity and dead loads we have with c = 2 and adding (2.7) 

~ = - [~] fixed = [~] fixed 
st r a I ns st resses 

(2.12) 
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For the case of non-lincar elasticity by 

u= Ecn (2.13) 

and sLill dead loads (We = 0) we get c = 1 +n and thereby 

dU 1 [aU) 1 [aU) an = - Ii on fixed = Ii on fixed 
strains stresses 

(2.14) 

3. OPTIMALITY CRITERIA 

We wanL to minimize the elastic strain energy U 

Minimize [U = ~ Ue] 
e=l 

(3.1) 

which is obtained as the sum of the element energies Ue for e = 1,2, ... ,N . Two groups of design 

parameters are considered. The material orientations Oe for e = 1,2, ... ,N assumed constant in 

each clement, and the clement thicknesses te for e = 1,2, ... ,N , also constant in each element. 

The constraint of our optimization problem is a given volume V, i.e., by summation over 

clement volumes Ve for e = 1,2, ... ,N 

N 
V-V= E Ve-V=O 

e=l 

The gradients of volume are easily obtained for thicknesses 

and volume do not depend on material orientation 

(3.2) 

(3.3) 

(3.4) 

The gradients of clastic strain energy is simplified by the results of section two and thereby 

localized 

au = _ [aU) = _ [a(lIe Vel] 
0Ii""; 0Ii""; fixed strains ahe fixed strains 

(3.5) 

valid for he = Oe as well as for he = te . The strain energy density Ue is introduced by Ue = 

lie Ve = Ue ae te with ae for element area. 
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With fixed strains, the thickness has no influence on the strain energy density Ue and thus with 

(3.3) and (3.5), we directly get 

(3.6) 

With respect to material orientation the gradient is more complicated, because even with fixed 

strains will the energy density Ue depend on Oe. A rather simple formula is derived in [2], in 

terms of principal strains f), fll (I fll > I fill) - angle I/J from direction of f) to principal 
material direction - and material parameters C2 and Ca 

(3.7) 

With the gradients determined by (3.3), (3.4), (3.6) and (3.7) we can now formulate optimality 
criteria. For the thickness optimization the well-known criterion of proportional gradients gives 

- ueVe/te N Velte which means constant energy density, equal to the mean strain energy density 
(j 

ue = ii for all e (3.8) 

See also the early paper by MASUR [5J for this optimality criterion. 

For the material orientation optimization we have an unconstrained problem, and thus from (3.7) 

the optimali ty cri terion 

Sin2I/J[C2 ff + fll + 4Ca COS2I/J] = 0 for all e 
~ - ~) e 

(3.9) 

How is a thickness distribution that fulfill (3.8) obtained? We shall discuss a practical procedure, 

cf. ROZVANY [6], which is based on a number of approximations. Firstly, we neglect the mutual 

influences from element to element, i.e. each element is redesigned independently (but 

simultaneously) 

(3.10) 

Secondly, the optimal mean energy density ii is taken as the present mean energy density ii. 

Thirdly, the element energy Ue is assumed constant through the change Ate and then from 

(3.8) we get 
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U e -U-' Ve(1 + Llte!te) - , I.e. 

(3.11) 

It is natural to ask, why the gradient of element energy is not taken into account 

(3.12) 

but this is explained by the fact that although OU / ate is known by (3.6) the gradient of the local 

energy (the element strain energy) 

~ = [OUe] + [OUe] 8£ 
at e 7J"f'; fixed strain Oc or; (3.13) 

is more difficult to determine. The two terms in (3.13) have different signs, and also the other 

neglected terms OUe/Oti for e + i may be of the same order. Although the procedure (3.11) 
mostly work rather satisfactory, we shall extend our analysis to the coupled problem. 

4. MUTUAL SENSITIVITIES 

The redesign procedure by (3.11) neglect the mutual sensitivities, i.e. the change in element 

energy due to change in the thickness of the other elements. These sensitivities can be calculated 

by classical sensitivity analysis. Assume the analysis is related to a finite element model 

[S]{D} = {A} (4.1) 

where {A} are the given nodal actions, {D} the resulting nodal displacements and [S] = E [Se] 
e 

the system stiffness matrix accumulated over the element stiffness matrices [Se] for e = 
1,2, ... ,N. 

Let he be an element design parameter without influence on {A}, then we get 

[S] gL~} = -~ {D} = {Pel (4.2) 

where the right-hand side {Pel is a pseudo load, equivalent to design change. Knowing 

o{D}/ohe it is straight forward to calculate OUi/ohe. Generally the computational efforts 

correspond to one additional load for each design parameter. 

Then with all the gradients oUe/ Oti available we can formulate a procedure for simultaneously 

redesign of all element thicknesses 
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{t}next = {t} + {dt} (4.3) 

that takes the mutual sensitivities into account. In agreement with the optimality criteria (3.8) we 

change towards equal energy density ii in all elements. Formulated in terms of strain energy per 

area we want 

N 
uete + E ¥. dti = ii(te + dte) for e=1,2, ... 

i=l 1 

(4.4) 

or in matrix notation 

{ut} + [V(ut)]{dt} = ii[{t} + {dt}] (4.5) 

with solution 

{dt} = [[V(ut)] -ii[I)r {(ii-u)t} (4.6) 

The gradient matrix [V(ut)] consists of the quantities O(uete)/ Oti . 

Note that with the assumption of fixed element energy, the strain energy per area is unchanged, 

i.e. [V(ut)] = [0] and we get the simple redesign formula (3.11). This procedure can therefore be 

evaluated by comparing the numerical values in the gradient matrix [V(ut)] with ii, especially 

the off-diagonal values. 

An alternative formulation would be Newton-Raphson iterations directly on energy densities 

(ue-ii) + ~ lJ(arii) dti = 0 for e=1,2, ... 
i=l 1 

(4.7) 

or in matrix notation 

[VU]{dt} = ii{1} - {u} (4.8) 

Here, the gradient matrix [Vu] constitutes rue/ Oti . An interesting formulation is obtained, 

when we multiply every rowe with area ae and get 

[V(ua)] {dt} = {(ii-u)a} (4.9) 

The present matrix is now symmetric, which to the knowledge of the author is not well-known. 

Remembering that ueae = Ue/te we prove this directly from (3.6) 
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lJ2U __ 8(Ue/te) 
ateati - ati 

lJ2U = _ a(U i/ti) 
at i ate ate 

(4.10) 

Therefore, as lJ2U /( ateati) = /}lUl( atiate) we have 

[V(ua)]T = [V(ua)] ( 4.11) 

5. CONCLUSION 

Optimization problems with a single active const.raint (thickness design with given volume) or 

without constraints (orientational design) can be solved by simple iterative redesigns based on 

derived optimality criteria. 

For the thickness design this redesign procedure is studied by deriving higher order sensitivities. 

Second order sensitivities of total strain energy are evaluated as first order sensitivities of local 

(element) specific strain energy. 

For the orientational design a normal gradient technique will generally not work, because many 

local optima exist. Therefore, design changes in each redesign must be based on a criterion that 

identifies the orientation which gives global minimum of strain energy. 

For optimal material orientation we get coinciding principal stresses and strain directions. This is 

used as a "test optimality criterion", and can also be utilized during iteration. 

Optimization of thickness distribution for anisotropic materials (and even a class of non-linearity 

too) is no more complicated than with simple linear isotropic materials. The criterion of uniform 

energy density still holds. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

REFERENCES 

Banichuk, N.V.: Problems and Methods of Optimal Structural Design, Plenum Press, New 
York, 1983. 
Pedersen, P.: On Optimal Orientation of Orthotropic Materials, Structural Optimization, 
Vol. 1, 101-106, 1989. 
Pedersen, P.: Bounds on Elastic Energy in Solids of Orthotropic Materials, Structural 
Optimization, Vol. 2, 55-63, 1990. 
Landriani, G.S. & Rovati, M.: Optimal Design for 2-D Structures made of Composite 
Materials, subm. to J. of Engineering Materials and Technology. 
Masur, E.F.: Optimum Stiffness and Strength of Elastic Structures, J. of the Engineering 
Mechanics Div., ASCE, EM5, 621-649, 1970. 
Rozvany, G.I.N.: Structural Design via Optimality Criteria, Kluwer, 1989. 463 p. 



www.manaraa.com

OPTIMIZATION OF THE LoNG-TERM BEHAVIOUR OF 
COMPOSITE STRUCTURES UNDER HYGROTHERMAL LoADS 

Peter Udo Post, FESTO KG, Abteilung EF-BE, D-7300 Esslingen, FR Germany 

ABSTRACT 
Time dependend material properties of multilayered fibre-reinforced composites 
caused by viscoelasticity and moisture diffusion have a great influence on the 
behaviour of structural components especially if high shape accuracy is demanded 
and if particular dcformation bounds havc to be observcd. Thinking about the "bcst 
possiblc" design of compositc structures leads to a time-variant optimization 
problem which can be solved by mathcmatical programming applying a direct 
optimization strategy. In threc steps the original problem is transfonncd into a 
parameter optimization problem and integrated into an optimization loop. Special 
tools for evaluating the optimization model of viscoelastic composites with hygro
thennal loads have been developed and are included. The results of a practical 
example shows clearly that time-variant effects must be considered when composite 
structures are built for long-tenll use under natural climatic conditions. 

1. INTRODUCTION 

Bbre-rcinforced composite laminates are characterized by anisotropic and 
time-dependent material behaviour [I]. The long-time behaviour is caused by 
viscoelastic creep and relaxation properties of the resiu and by varying moisture 
concentration due to diffusion. The extended material law of linear viscoelasticity 
with additional terms for temperature and moisture reads as follows [1,2]; 

t t 1.. 

Ylj (t) = J Sljkl(1:-1:') dokl(t') + J ()!T1jh-1:')d8(t') + J ()!cJ/1:-1:')ddt'), (I a) 
-00 - 0:> - CD 

t L t 

okl(t) = J C kIlJ (1:-1:') dyij(t') - J ~~lh-1:')d8(l') - J ~~I(1:-1:')dc(t'), (I b) 
-00 -00 -00 

kl CkllJ, with strains YI1 ' stresses 0 ,creep compliances SIJkl' relaxation moduli 
coefficients of thermal expansion ()!Tlj and hygroscopiC expansion (XCIi' temperature 
difference 0=.:1-'&0' moisture concentration c and the tensors of hygrothermal 
elasticities ~~I and ~~I. The material law can be simplified using Schapery's quasi
clastic method [2] and then combined with the basic equatiolls of the classical 
theory of laminates [3-5J. This allows the structural analysis of laminated 
composite structures and the detemlinatlon of their long-time behaviour, The aim 
of an optimal design of composite structures with such a time-variant behaviour is 
to meet special requirements as form stability and accuracy as well as material 
failure etc. throughout their technical lifetime. 
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2. TIME-DEPENDENT OmMIZATION PROBLEM AND SOLUTION STRATEGY 

For time-variant structures the solution of a time-dependent optimization problem 
is required [10]. The time-dependent design-functions have to be chosen in such a 
way, that the objective-functional is minimized and the constraint-functionals are 
fulfilled during the total time of interest: 

with time t within the intervall [to' tt] ;; { tit (IR, to ~ t ~ tt } : vector of design 
functions f(U : IR ~ IRDI; i objective functional f : IRDI; ~ IR: vectorfunctional of 
llG inequality constraints g: IRnl; ~ IRnG: vectorfunctional of nH equality 
constraints,!!: IRIlI; ~ IRnH:-F < f£tW,t] > means to apply an operator P to the 
functional Ht(U,tl, e.g. differential and illtegral operators. Using a direct 
solution strategy the problem (2) is transformed into a substitute parameter 
optimization problem, which can be solved by well known methods of mathematical 
programming. The strategy requires three steps [101: 

a) Separation of system equations. First state-functions !! (U are Introduced to 
separate the state equations from the optimization problem. Thus the state equations 
can be separately solved by special numerical algorithms for structural analysis. 
With the remaining equality constraints H the reduced optimization problem is 

Min { P< f[!!(t) , s.(t) ,t] > I g <~ [!!(t), s.(t) ,t] > ~ Qi H <h[!!(t), ~t) ,t] > ~ Qi t( [to,t!]} . 
(3) 

b) Approximation of deSign-functions. In a second step the design functions lIt) 
are approximated by form functions 

(4) 

The form-parameters ~ are time-Independent coefficients and are calculated from 
design variables.?! by using simple design-models. Thus a parameter optimization 
problem is achieved: 

Min{F <f£!!(t),rf.!!.(.?!),tl,tl> Ig<~[!!(t),rf.!!.(~},tl,tl> ~Q i 

H <h[!!(t),lf.!!.(.?!},tl,t1> = Q ; t ([to,tt] } . 

(5) 

To get a good performance of the solution strategy the type of the fonn functions 
must be chosen problem dependent. Possible functions are step functions, poly
nomials, fourier-series or spline-functions. As outlined later in chapt. 3 form 
functions of composites are formulated in special consideration of the material law. 

c) Functional evaluation. The optimization problem (2) contains objective and 
constraint operators representing Integral criteria or maximum value criteria to de
cide whether a functional fullfills the demands. For simple problems these operators 
might be evaluated analytically, but most cases need a numerical calculation. 
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When maximum value criteria are used. feasibility of the constraint functionals g, 
and hj at every time within the given time-intervall is desired. I.e. the most 
critical value has to be examined. Together with the first two steps the 
optimization problem results in a min-max parameter optimization problem: 

Min {f[~(~)] = m:x f [.!!(t).I{~(~).t l.tl I 
i, [~~)] = mtax g, [.!!(t). I{~(~) .t}. tl s: O. i = J ..... n G ; (6) 

hJ[~(~)]= mtax IhJ [.!!(t).I{~(~).t}.tll = o. j = J ..... nH-n u ; tE [to.ttl }. 

The calculation of the maximum values is a subordinated optimization problem and 
can be treated separately. For this purpose a special adaptive search technique is 
used which is an extension of the algorithm described in [61. 

The three steps of the direct optimization strategy are an integrated part of the 
optimization procedure SAPOP [7-91. Fig. J contains the extensions of the 
optimization loop. After determination of the form parameters by a design model 
the form functions are calculated at time to' A subsequent structural analysis 
produces the actual values of the state fUllctions. The results of the evaluation 
model are the values of objective and constraint functions. Applying the adaptive 
search technique the inner optimization loop is repeated several times until the 
maximum values of the functions are found. The latter are subsequently delivered 
to the optimization algorithm. which calculates a new set of design variables and 
starts the global optimization loop once more until a convergency criteria responds. 

3. DESIGN AND EVALUATION MODEL 

Following the optimization strategy suitable form functions for composites have 
to be defined. For this the fibre angles and layer thicknesses of the laminate are 
interpreted as form parameters of the form functions "laminate stiffnesses" and 
"hygrothermal force resultants" [J01. The design variables are attached to layer 
angles (x, and layer thicknesses tt by using a simple linear transformation model: 

~J.?f) = [~~;J = ~ 1i + ~ . 
This allows variable linking and variable fixing. so that symmetric and anti metric 
layers or a special laminate configuration can be modelled. Subsequently at given 
time t = tl the diffusion equation is solved n. 12] 

ill..!l. = ~(D ill-t.!l) 
at aC 33 aC with diffusion coefficient D33 • (8) 

The calculation of laminate stiffnesses and hygrothennal force resultants is based on 
the quasi elastic approximation of the hygrothermal viscoelastic material law [2.9]: 
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(strain stiffness) (9a) 

(coupling stiffness) (9b) 

(bending stiffness) (9C) 

(ge) 

with the plain relaxation tensor kEIX13 "y O( 1:) of layer k at reduced time 1: due to hygro
thermal time-shift for thermorheologic simple material behaviour [11] and distance 
hk of layer bottom surface k to laminate mid surface. The actual stiffnesses and 
hygrothemlal stress resultants are the input of the structural analysis module, which 
provides the evaluation model with laminate stresses, strains and displacements as 
state functions to calculate failure criteria, objectives and constraints. 

4. STRESS AND WEIGHT OPTIMIZATION OF A COMPOSITE CANTILEVER TRUSS 

A cantilever truss made of CFC-tubes (Pig. 2) shall be improved so that during a cer
tain time period the objectives "laminate failure criteria" and "weight" are minimized. 

DO----~~--~~----~~~~----~~--~-----
y;uy 

F 

Fig. 2: Composite cantilever truss made of CFC-tubes 
Geometry: height hi = 1 m, length I = 5 m, mean tube diameter d = 80 mm 
Loads: dead weight, single load F = SOkN, moisture diffusion at surface 

concentration Co = 1 %, time t s: 105 h, temperature .a = 23 ° C 
Material: C-fibre 300, epoxy resin 934C, 4, layers (00, 90°, 90°, 0°) 
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The total laminate thickness of each tube is a design variable and the mean tube 
diameter is held constant during optimization. The multiple objective problem reads: 

1. (?f., t,. ) ._ (to) '" --r~. (~,t,.) =_ w 1 
fz(~,t,) = m:x m:x [kBPBa(K,t')'k8ZPBa(K,t,)] . 

Tube stiffnesses, hygrothermal loads and tube cross sections are provided by the 
design model at time t, and are given to the structural analysis modul. From the 
analysis results fibre break failure kBPBa and bonding break failure kBZPBa are 
calculated at each single layer k of each tube a [13]. The objectives are reduced to 
a scalar preference function using the maximum value criterion (6) and the method 
of constraint oriented transformation [7]. The failure criteria of each truss member 
built an additional constraint: 

ga(lY = max max {[ kBFBa(.?f..t,), kBZFBa(K, t,)] - 1} s: 0, t, E [to' t,] (11) t., k 

In a first optimization calculation a stationary moisture distribution achieved at the 
final state of the diffusion process is considered (Fig. 3). Second the structure is 
optimized with time-variant moisture distribution. At a same utilization of the 
failure criteria the optimal weight differs up to 28 %. Fig. 4. shows the design 
variables of the weight-optimal design at utilization rate 1. Neglecting the time
dependency results in a weak underdlmensioned structure. Truss members with small 
laminate thickness achieve a constant moisture profile earlier as larger dimensioned 
members. Accordingly internal forces are varying with time and constraints can get 
infeasible. During the process of diffusion considerable constraint violations occur 
although all criteria are feasible in the final stationary state (Fig. 5). 

...... 
Ol 
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:3: 
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.c:: 
Ol 
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'\ 
I 

time-variant moisture 

~ 

I>=~~ 
I 
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J I 
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Bg. 3: l'unctional efficient solutions of a composite cantilever truss 
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~ 0.60 - .-------- -----------___________________ ..., 
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~ 0 . 40 ::.. . .......... time-variant moisture 
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Fig 4: Design variables of the weight optimal design 
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Pig. 5: Time- variation of failure criteria of the weight optimal design, calculated 
with stationary moisture distribution 

6. CONCLUSION 

A new direct optimization strategy for structures with time-variant material 
behaviour is introduced. The optimization can be carried out using the well-known 
and efficient algorithms of mathematical programming. The general formulation of 
this strategy allows an application on further types of time-dependent problems. 

Por laminated composite structures a special optimization model has been developed. 
The lon{t-terln material behaviour is described by the quasi-clastic-approximation of 
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linear viscoelasticity and Fick's law of diffusion. Interpreting laminate stiffnesses 
as form functions and calculating failure criteria in a special optimization model 
guarantees modularity and adaptability. 

The optimization results of a composite cantilever truss show the need for taking 
into account long-term effects to avoid underdlmensioned structures which are not 
able to achieve the demands during their life-time. 

Further investigations are necessary to get more general statements about the 
effect of time-variant material behaviour on optimal designs. To extend the field 
of application the solution strategy should be used to optimize stru<-'tures with 
short-time dynamic behaviour. In particular for large scale systems of modern 
light-weight constructions and aerospace technology a combination of the direct 
solution strategy with decomposition methods seems to be very promising 
considering future developements of parallel and super computers. 
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DESIGN OF LAMINATED COMPOSITES UNDER 
TIME DEPENDENT LOADS AND MATERIAL BEHAVIOUR 

Joachim Biihlmeier 
Institute for Computer Applications, 

Pfaffenwaldring 27,7000 Stuttgart 80 , F R G 

1. Problem description 

In the design of laminated composites it is necessary to define a lru'ge number of design 
variables and manifold objective functions or multicriteria objective functions. The 
question is: are we able to solve all the arising problems economically on the FEM
level, or should we split some tasks so that we can handle them on a local sublevel 
(fig.1)? The advantage is that we can reduce the effort significantly when operating 
on a sublevel; the weak point is, however, the definition of FEM-Ievel-corresponding 
constraints and the design of corresponding objective functions. This means we tl'y to 
introduce decoupling conditions between the FEM- and local level of optimisation. The 
analysis procedure on the local level may be defined according to the used elements, the 
aspect ratio or the location of the load measurement points. 

Here, we consider in a first step only the local level optimisation based on the classical 
thin laminate theory with extensions to the in-plane and transversal behaviour that we 
use to have the ability to compute strains caused by temperature and moisture loads, 
or to improve the results in the case of low aspect ratios (fig. 2). One may regard the 
stand-alone application of the local level optimisation also as a predesign procedure. 

The standard loads as normal and shear loads, moments and twist are extended by 
time-dependent temperature and moisture loads in the short and medium ti~e range 
caused by ply temperature and moisture strains akA.Tk(t),{3kA.mk(t) as well as by 
initial loads caused by creep and relaxation strains TJk = TJk(t, Uk, "Yk) in the long time 
range. Optimisation normally results in an extremely high ratio of actual stresses to 
limit stresses, so these time effects have to be taken into account when there is a given 
exposure time. 

The additional loads in the formulation of the classical thin laminate theory are 
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2. Optimisation 
The standard optimisation problem 

W(:.:) = min! 

gi(:':) ~ 0 i = I,m 

j = l,n 

is solved iteratively by introducing approximations for the weight function and the 
implicit constraints such that 

n (Dw) [( x. )/30j ]1 
W=WB+ LXjB -. _.1_ -1-. 

j=1 ax] B X]B (30] 

(30j = aosign ( ~~j) B 

"if; = 9w + 'tXjB (a9;.) [(~)/3ij -1] ~ 
j=1 ax] B X}D (3.) 

(3ij = aj sign ( g!!~ ) D 

The approximated problem is changed to an unconstrained problem with the concept 
of the interior penalty function (Fiacco, McCormick): 

4>(:.:,rk) = W(:.:) 

+ rk (f ~ + t x imin + t x jmu ) 

i=l Y; j=l Xj - Xjmin j=l Xjm.., - Xj 

Due to the different demands in the design of laminated composites, the objective 
function may be figured or designed in numerous ways. We reduced the possibilities for 
the user to 5 basic forms: the single value 

the objective weighting 

I 

Wtat (:.:) = L:CjWj(:':) = ctW 
j=1 

the objective function ratios 

~ Wj(:':) 
Wtat(:':)=~CjW' (:.:) 

J=l 1+1 

the objective weighting with demand levels dj 

I 

Wtat(:.:) = LCj(Wj(:':) - dj) 
j=l 



www.manaraa.com

109 

and objective function differences 

I 

Wtot(Z) = ~::>j(Wj(Z) - Wj+l(Z)) 
j=l 

One can use all forms in the minimisation and maximisation mode. Possible elements 
of the objective functions are the laminae weight, the elements of stiffness and flexi
bility matrices, thermal coefficients of expansion and curvature, moisture coefficients 
of expansion and curvature, thermal conduction, thermal and moisture strains or total 
strains and total curvatures. 
The constraints consist of implicit constraints gi as given from a selected failure criterion 
(Tsai-Wu, ZTL or Puck) and explicit constraints hi for the design variables. First
ply-failure only is regarded. The reserve factors RLF,min to longitudinal fracture and 
RTF,min to transverse fracture must be given. Both types of constraints then read 

1 RLF min ~ 0 gi= -
Ri,LF 

gi = 1- RTFmin ~ 0 
Ri,TF 

t· 
hi = 1 - --' - ~ 0 

tmaz,i 

h· = 1- tmin,i > 0 
, ti-

where angles ai, sums of ply thicknesses with determined orientations due to mini
mum content requirements from manufacturing experiences or elements in the stiffness
respectively flexibility matrix may also occur in hi. Several restriction steps to the ply
sequences can be selected: no restriction, arbitrary coupled plies, symmetrical laminate, 
symmetrical laminate plus arbitrary coupled plies. 

3. Time-dependent loads 

The application of composites based on resin-fiber materials is often restricted because 
of their bad long-time properties caused by moisture absorption and creep/relaxation 
effects. We try to include this behaviour in the optimisation procedure and consider 
first the moisture diffusion. 
The Fickian moisture absorption law gives 

~7 = div(D gradm) 

which can be reduced in our case to the transversal direction 

om = ~ (D om) 
at oz zz oz 
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Analytical solutions of this differential equation exist for an unlayered cross section. In 
the case of layered material, the diffusion coefficient D z z may change from layer to layer 
and we are forced to use a finite difference method. In the following At means the time 
interval and Az means the thickness interval, so the differential equation can be written 
as 

Atm _ D ()A~m 
At - zz z Az2 

A~m = (mn+l,k - mn,k) - (mn,k - mn-l,k) 

= mn+l,k + mn-l,k - 2mn,k 

At 
mn,k+l = mn,k + Dn Az2 (mn+l,k + mn-l,k - 2mn,k) 

When we compare the analytical (fig. 3a) with the numerical solution (fig. 3b), we see 
that a subdivision of one ply into 5 strips already gives the analytical solution. 
In the case of temperature loading, we get a similar differential equation 

aT = ~ (.A aT) at az Z% az 
where .An is the thermal conductivity. With the help of the finite difference procedure, 
we are able to compute the moisture and temperature per ply in dependence of a given 
starting state and exposure time. The corresponding loading cases are built up at 
relevant time steps (fig. 4). 

4. Time-dependent material behaviour 

Secondly, we regard the creep/relaxation effects with the help of a simplified constitu
tive model. In reality and in a comprehensive inelastic analysis, there are numerous 
behaviour properties that we will not regard in a first analysis step. Among these are 
the viscoelastic, the viscoplastic and elastoplastic strains. In general, the corresponding 
flows affect one another, they are load history and load velocity dependent. We reduce 
our consideration to the aging flow strains in 

'1 = '1 0 g;n. + '1 .;... + '1 0 ;0<0- + '1., .... -
J'ow e'G.';c p'.dic pl •• eie 

Fig. 5 gives the general one dimensional behaviour in time. Fl.·om material testing under 
several load levels and prestressing time intervals one gets relevant constitutive models 
for the numerical prediction of stru<;tural beh~viour ~n the inelastic response regime. It 
is usual to simplify the general one dimensional creep law in the rate form 



www.manaraa.com

111 

r,a/ = f( u, t, T, 'f/a/) 

by the time-hardening creep model to 

and determine a,p,m with the method of least squares. 
For a unidirectional ply no exact two-dimensional law was available, so we assumed 
in the transversal direction nearly the resin values, in the longitudinal direction an 
approximation of the fiber values and for the off-diagonal terms a weak coupling of 
both. In general, the single ply in a laminate is neither kinematically nor statically 
determined, that means the plies are exposed to neither pure creep nor pure relaxation 
and we have to find the correct state by the linear expansion 

where 

olixx Olin ollxx 
au xx au yy au xy 

A'I= 
Ol]yy Ollyy O'lyy 
au xx au yy au xy 

Ollxy olixy oi/xy 
au xx au yy au xy 

and 

r,xx(t) - r,xx(t + 6!.t) 1}x;r(t) - l]yy(t + 6!.t) 1}xx(t) - 1}xy(t + 6!.t) 
6!.'f/xx 6!.'f/yy 6!.'f/xy 

B'I = 
r,yy(t) - l]xx(t + 6!.t) l]yy(t) -llyy(t + 6!.t) 1}yy(t) - llxy(t + 6!.t) 

6!.'f/xx 6!.'f/yy 6!.'f/xy 

r,Xy(t) - r,xx(t + 6!.t) 1}xy(t) - llyy(t + 6!.t) 1}xy(t) -17xy(t + 6!.t) 
6!.'f/xx 6!.'f/yy 6!.17xy 

Between 6!.u and 6!.TJ the elastic strain- st.ress relation exists in incremental form 

that leads to 
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K 1 [6.fT 1 [K6.-Y 1 
I - B,,6.t 6." - 6.tr, 

This equation separates 6.-y in an elastic part 6.E (corresponding to 6fT) and in an 
inelastic part 6". 
For the iteration, K.6-y is the driving force, convergence is achieved when the force steps 
are small enough, that means the norm of the stress ratios has to be less than 1 

HI 
II 8fT;+111 < 1 

8fT n+l 

From this, one derives the time-step 6.t. Results are given in fig. 6. 

5. Extensions 

To the constant strains EO and linear strains ZkK,° in the ply k we add a quadratic and 
a cubic strain distribution EO + ZkK,° + Zk2E1 + Zk3K,1. These strains have no exter
nal resultants and we call the corresponding stresses "self-equilibrating stress groups". 
Integrating about all plies, we get 

N° fT EO 

MO 
n l h• 

ZfT n 11 •• ZK,° 
dz = :E rK.k Kk Kk K.kJ dz 

Nl = {; h._1 Z2fT k=l 1'.-1 
Z2 E l 

Ml Z3fT Z3K,1 

N° A B D-£.A 12 G- ..!..t2B 20 
EO 

MO D G-£.B 
12 C - ..!..t2D 20 

K,0 

= 
C-£.D Nl E - ..!..t2 G El 

12 20 

Ml sym F - "!"t2C 20 
,,1 

where El and K,1 give the amount of the quadratic or cubic contributions and further 

n 

A = :E Kk(hk - hk-t) 
k=1 

B = ~ t Kk(h~ - h~_I) 
k=1 

G = ~ tK.k(h~ - h~_I) 
k=1 

C = ~ t Kk(h~ - hLl) 
k=1 

E = ~ t Kk(h~ - h~_l) 
k=1 

F = ~ t Kk(hl- hLl) 
k=l 
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For the determination of the load vector {NO MO Nl Ml }, we first compute the layer 
temperatures and moisture values ATk, Amk from the finite difference analysis. The 
integration about the thickness gives 

No Ok {jk 

Mo n l h• "kJ ( 
ZOk Z{jk 

Amk(t»)dZ = L r"k ATk(t) + 
Nl k=1 h._ 1 

Z20k z2{jk 

Ml Z30k Z3{jk 

A further extension is the inclusion of transversal shear and normal loads. We consider 
first monoclinic anisotropic material 

O"~x 
A I 

:1:11 
A I 

:1:12 
A I 

:1: 16 
A I 

:1: 13 0 0 f~x 
I 

O"yy 
AI 

:1:21 
A I 

:1:22 
AI 

:1:26 
AI 

:1:23 0 0 f~y 
I 

O"xy 
A I 
:1:61 

A I 
:1:62 

AI 

:1:66 
A I 

:1:63 0 0 I 
fxy 

= 
O"~z 

A I 
:1:31 

A I 
:1:32 

AI 

:1:36 
AI 

:1:33 0 0 f~z 
I 

O"yz 0 0 0 0 A I 
:1:44 

A I 
:1:45 

I 
fyz 

O"~x 0 0 0 0 A I 
:1: 54 

A I 
:1:55 f~x 

and assume a constant transversal stress distribution, so that N.J..k = N.J.. and introduce 
a mean transverse stiffness k22 . With the abbreviation 

for the above stress-strain relation we arrive at 

where 

n 

A = L("ll - "12"221"~2)k(hk - hk-d 
k=1 

n 

B 1 "(' A, -1 At) (12 h2 ) = 2 L..J "11 - "12"22 "12 k 'k - k-l 

k=1 
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n 

G = L K.22k(h k - hk - 1) 
k=l 

n 

C = L("12";-lK.22)k(hk - hk-l) 
k=l 

This procedure is equivalent to the weakening of the in-plane stiffness and derives phys
ically from the opening of the transversal degrees of freedom. 

6. Results 

In general for good-natured problems, one needs 5 to 6 iteration loops. For constraint
cornered tasks, one has to suppose 15 to 20 iteration loops and bad constraint- or 
weight-function-behaviour may lead to zig-zagging. 
A typical task which may be solved without difficulties is the preliminary simple weight 
optimisation with ply thicknesses as variables and reserve factors as constraints as well 
as a following parameter study about the number of layers (fig. 7, application for a 
cross-ply). One may find for different ratios tmax/tmin a different optimal Hum.ber of 
layers. Fig. 8 shows the increasing weight for decreasing ratios tmax/tmin. 
Fig. 9 gives a first representative example of a multicriterion optimisation. The curves 
show the relation between weight Wand curvature /\'xy, when we vary the weighting in 

or 

The given limits VVmin and /\'xy,min del.iver the solution of best possible compromise. 
In the same way, we get in a normal load case the optimum design vector for a weight 
function, which contains the weight, the thermal conduction and the normal strains in 
x-direction 

For low strain values we get an undesired high thermal conduction, which is in this case 
linearly coupled with weight and vice versa, so the compromise is also given here by the 
limit values (fig. 10). 
Fig. 11 shows the possibility to tailor a laminae to given physical properties. There 
is no load and we design a material that has a zero thermal coefficient of expansion in 
y-direct.ion. With the growing constraint (Q yy =? 0) weight increases. 
Considering the ply-orientations as variables we touch several problems: 
(i ) the influence of angle-variations on objective functions as well as on constraints 

is much less than thickness variations. This means numerical differences of two 
to three digits in the gradient vectors. The disadvantage is that ply-orientation is 
locked in simultaneous thickness- and oricntation- optimisation problcms. 
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(ii ) the approximated objectve function does not meet the real objective function and 
leads to zig-zagging. 

(iii) numerous local optima exist. 
The dilemma is that given small step-sizes stop the iteration in a local optimum and 
large step-sizes soon result in zig-zagging. On the other hand, one should see the 
limited influence of the ply-orientation and the manufacture possibilities, which are not 
so perfected that one easily produces every given stack sequence. A typical result for 
pure ply-orientation is given in fig. 12. The actual load is Mxy and the objective 
function is the corresponding curvature "'xy, weight is constant in this case. 
Another method seems to promise better results: one starts with all ply- orientations 
accepted in the result and extremely small lower limits for the thicknesses. Fig. 13 
shows the result for a 1G-ply laminate with the loading case N xx , M xx , Mxy and the 
weight function 

ltVtot = Cl W + Cz"'xx 

Explicitly given arc the solution of best possible compromise Cl = Cz = 1.0 and the 
solution with the least deviation from a mean thickness. 
Most of these examples call be handled with additional time dependent loads; the 
varying loads are represented by a finite number of loading cases over the given time 
interval. Fig. 14 shows the end state of an optimisation in time. All plies have the 
same orientation, so one can see the expected low transverse fracture reserve factors for 
the outer and the uncritical loading for t.he inner plies. The optimal design therefore 
presents increased thicknesses in the cover plies and decreased ones in the core plies. 
When the temperature profile has reached constant values, the reserve factors are equal 
and higher than the critical ones. Fig. 15 contains the conditions when a standard 
laminate {0° 90° 45° - 45°} is used. 
Inelastic aging flow results are given in the la.st two figures in a normal load and a 
momentum load case. Fig. 16 'shows different objective functions about exposure time. 
For lVtol = ltV or lVtot = W + Ail wit.hout any strain constraint, we have decreasing 
weight with time, but the critical time instant is t = 0 h. 
For TVtot = W + 2A~1 , the critical time instant is t = 60 000 h, the corresponding 
tlesign is given in the figure. For a prescribed strain IXX , weight increases at much 
higher rates. We can observe the same tendencies in the momentum load case (fig. 17). 
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ABSTRACT 

Assuming the elastic energy as a meaningful measure of the global stiffness (or flexibility) 
of an elastic body, in this paper the interest is paid to the determination of those local 
orientations of the material symmetry axes in an orthotropic solid which correspond to 
extreme values of the energy density. 
In the general formulation of the problem, and assuming the strain field as given, a linear 
elastic orthotropic three-dimensional solid is considered and the stationarity conditions 
are obtained. Such a set of algebraic equations is then explicitly solved referring to the 
cubic case and the optimal orientations are found as well. It is also pointed out how 
such orientations depend both on a material parameter and on the strain field. 

1. INTRODUCTION 

One of the earlier results on optimal orientation of material symmetry axes can be found 
in a work of Danichuk [1] where necessary conditions for optimal distribution of material 
properties in orthotropic bodies subjected to plane state of stress are given. Such results 
have found new impulses in very recent times, mainly due to the growing interest on 
fiber composite materials. In fact, the optimal orientation of reinforcing fibers seems to 
be an interesting and promising problem in mechanics of solids. 
The aim of the present paper is to give some general results on optimal orientation of 
the mechanical properties of orthotropic bodies. Up to now, some papers have been 
published on the subject with reference to plane elastic problems for 2-D structures. 
After the pioneering work of Banichuk, the same problem was studied by Sacchi & 
Rovati [4] and Pedersen [2] which independently obtained similar results and gave me
chanical interpretations of the optimality conditions. Later on, Pedersen [3] performed 
a systematic study of the optimal solutions and obtained, for the plane stress problem 
again, conditions for absolute maxima and minima. Numerical solutions of the problem 
can be found in O1hoff & Thomsen [5]. 
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In this paper, the optimal orientation of the material symmetry axes in a three
dimensional orthotropic body are sought. The attention is focused on the determination 
of absolute maxima and minima, i.e., those orientations of the orthotropy axes for which 
the body exhibits the stiffest (or the most flexible) response. In Section 2, the general 
formulation of the problem is presented and the optimality conditions are shown. In 
particular their mechanical interpretation is pointed out, namely the collinearity of prin
cipal directions of stress and strain at the optimum. Then two classes of solutions are 
given as well. In Section 3 the problem is then restricted to the cubic case, for which a 
complete analytical solution has been performed. It is also highlighted how the optimal 
solutions depend on the actual strain field and on a parameter depending on the shear 
stiffness of the material. Moreover it is shown that absolute maxima and minima are 
attained only in the case of simultaneous collinearity of stress, strain and orthotropy 
directions or if the longitudinal strains referred to the material symmetry axes are equal. 
Solutions where only one of the symmetry axes is collinear with one of the principal 
strains give rise to local maxima or local minima for the energy density. 

2. BOUNDS OF ELASTIC STRAIN ENERGY: GENERAL FORMULATION 

Consider a linear elastic orthotropic body, defined on the open domain B E R 3 , with 
boundary 8B == 8B t U8Bu • Tractions ti and displacements Ui (i = 1,2,3) are prescribed 
on 8B t and on 8Bu , respectively, while the body forces bi are given in B. 
Denote by xi, i = 1,2,3, an orthogonal reference frame with axes aligned, at each 
point of the body, with the principal directions of orthotropy. Then, indicate with x"', 
0: = I, II, III, the axes of a second reference frame coinciding, at each point, with the 
principal directions of strain. Let 9("') be the unit vectors associated to the frame x"', 
with components g~"') referred to :i. Now, the problem to be dealt with consists in 
determining the local mutual orientations of the frames xi and x"', in order to find 
extreme values (absolute maxima and minima) of the work performed by the external 
loads. Such optimal orientations can be specified through optimal values of the nine 
components g~"') (which undergo the constraints g~"')gtp) = 6~;~, 0:,(3 = I,II,II!). For 
the sake of simplicity, here it seems to be more convenient to characterize the mutual 
orientations of the two frames through a new set of design variables, namely the three 
Euler's angles Oq (q = 1,2,3), chosen as depicted in Fig. 2.1. The relationship between 
the direction cosines of the frame x'" and the angles Oq is 

S9, C9 2 

-S9, S92C9a + C9, S9a 

-S9, S92 S9a - C9, C9a 

(2.1) 
where, for brevity, the notations S9. = sinOq and C9. = cosOq were used. With these 
assumptions, the problem can be then stated as follows: find 
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Figure 2.1. Euler's angles. 

where iii is the actual displacement field for prescribed ()q, according to equilibrium, 
compatibility and stress-strain relationship. Now, the functional :F to be minimized 
(or maximized) is equal, but opposite in sign, to UO = minui U, where U (Ui, ()q) is 
the total potential energy and the functions Ui belong to the class of the compatible 
displacement fields. In such a way, the constrained min problem (2.2) can be rewritten 
as the following unconstrained min max problem (see [4) for details): find 

(2.3) 

being £ the specific strain energy 

(2.4) 

In the reference frame xi, i.e., in principal directions of orthotropy, the specific strain 
energy (2.4) can be rewritten in explicit form as 

2 £ = Ell 11 CllC11 + 2E1l22c11c22 + 2E1l33c11c33 + E 2222 c22C22 + 2E2233c22C33 

3333 1212 2323 3131 (2.5) + E c33c33 + 4E c12c12 + 4E c23c23 + 4E C31C31. 

Now, the stationarity conditions with respect to the Euler's angles ()q (q = 1,2,3) involve 
only the term £ of the functional :F; for this reason, the specific strain energy can be 
assumed as meaningful parameter of the global stiffness/flexibility of the body. Then, 
the solution of the problem requires solving the following set of three nonlinear algebraic 
simultaneous equations 

fJ£ / fJ()q = 0 q = 1,2,3 (2.6) 

for the three unknowns ()q. Denoting eUj), f3 = I, II, III, the principal strains and 

recalling that cik = E~~I e(f1)g~P) gkP), Eq.s (2.6) can be written as 

A~ A m A(~ 
_V_'" _ ik vcik _ 2" ~ (P) - 0 
fJf) - 0' fJf) - ~ e(p) fJ() 9 k - • 

q q P=I q 

(2.7) 
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In explicit form, stationarity conditions (2.7) read 
k .. 

f.3ja 'J Cik = 0 

( k k \ i' 
fljS81 - f2jC81-j a J Cik = 0 

2 (eUII) - eUI)) a ik gVI) giIII ) = 0 

(2.8a) 

(2.8b) 

(2.8c) 

where the symbol f~j denotes the Ricci's tensor. By means of suitable linear combina
tions of Eq.s (2.8), it is possible to rewrite such optimality conditions in the following 
way, which is more expressive from a physical point of view: 

(2.9a) 

(2.9b) 

(2.9c) 

In the most general case, i.e., when eU) =1= eUI) =1= eUII), the above conditions imply that 

(2.10) 

This means that, at the optimum, the principal directions of stress are collinear with 
the principal directions of strain. Such a mechanical interpretation of the optimality 
conditions has been already pointed out in [4) for the particular case of plane state of 
stress and now finds a more general confirm in these results. Collinearity of principal 
directions of stress and strain can be achieved, in particular, if the principal directions of 
orthotropy are aligned with those of stress and strain (trivial solutions), as an extension 
of the results obtained for 2-D solids in [2] and [4). Such a condition is fulfilled when 

i) (it = ()2 = 0, ()3 = 'If'/2 ==> Xl == xl, x 2 == xII, x 3 == xIII 

ii) ()l = ()2 = ()3 = 0 ==> xl == xl, x 2 == xIII, x 3 == _xII 

iii) ()l = 'If' /2, ()2 = 0, ()3 = 'If' /2 ==> Xl == _xII, x 2 == xl, x 3 == xIII 

iv) ()l = 'If'/2, ()2 = ()3 = 0 ==> xl == xIII, x 2 == xl, x 3 == xII. 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

The remainder two trivial solutions (i.e., with x 3 == xl) have to be seen as limit cases 
for xl -t x 3 , otherwise the Euler's angles degenerate and can no longer be defined. This 
yields 

v) ()l arbitrary, ()2 = 'If' /2, ()3 = -()l 

==> xl == xII, x 2 == xlIl,x3 == xl 

vi) ()l arbitrary, ()2 = 'If' /2, ()3 = ±'If' /2 - ()1 

==> xl == _xIII, x 2 == xII, x 3 == xl. 

(2.11e) 

(2.11J) 

Although the complete analytical solution of the general case seems to be extremely in
volved, solutions other than the trivial ones can be easily obtained by imposing collinear
ity of only one of the orthotropy axes and one of the principal direction of strain. For 
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instance, by subsequently aligning xl with Xl, x 2 and x 3 respectively, one gets the three 
almost trivial solutions 

Xl == Xl: 81 = 82 = 0 
2 (E1122 - E3311 ) e(I> + (E2222 - E 3333) (e(lI) + e(lII)) 

cos283 = (2.12a) 
[E2222 + E3333 - 2 (E2233 + 2E2323)] (e(II) - eUln) 

xl == x 2 : 81 = 7r /2 82 = 0 

2 (E1122 - E 2233 ) eU) + (Ellll - E 3333 ) (e(II) + eUII)) 
cos283 = (2.12b) 

[Ellll + E3333 - 2 (E3311 + 2E3131)] (e(II) - eUII)) 

xl == x 3 : 81 = 82 = 7r /2 or 81 = 0, 82 = 7r /2 

8 2 (E33ll - E2233) eU) + (Ellli - E2222) (eUI) + eUII)) 
cos 2 3 = ± (2.12c) 

[Ellll + E2222 - 2 (E1l22 + 2EI212)] (e(II) - e(III)) 

Analogous solutions can be obtained by aligning xII or xIII with one of the principal 
directions of orthotropy. Moreover it is not difficult to check that the solutions of the 
2-D case (see [2], [3], [4]) can be easily recovered from the general solution just shown. 

3. RESTRICTION TO THE CUBIC CASE 

Consider now the case of an orthotropic material characterized by three material con
stants only (cubic case); in this case, the material stiffness coefficients referred to the 
principal directions of orthotropy are such that 

El111 = E2222 = E3333 = kj E1l22 = E2233 = E 3311 = ).j E1212 = E2323 = E3l31 = p.. 

(3.1) 
Note that, if k = ). + 2p., the isotropic case is recovered. In the cubic case, the specific 
strain energy takes the form 

where 

2 £ = (kcu + ).C22 + ).C33) Cll + (kC22 + ).C33 + ).C11) C22 

+ (kC33 + ).cll + ).c22) C33 + 4p. (Ci2 + C~3 + C;l) 

= ).i; + 2p.11e + (k - ). - 2p.) (cil + C~2 + C;3) (3.2) 

(3.3a) 

(3.3b) 

arc the first and second invariant of the strain tensor. In this case, it is not difficult 
to check that the optimality conditions are independent on the material constants and 
read 

(Cll - c22) C12 = OJ (c22 - c33) C23 = OJ (C33 - cll) C3l = O. (3.4) 

The optimality conditions (3.4) are obviously fulfilled if 

a) C12 = C23 = C31 = 0 (3.5) 
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which corresponds to the trivial solutions 01 = O2 = 03 = 0, etc.; in this case, principal 
directions of orthotropy are collinear with the principal directions of strain and stress, 
as pointed out in the previous Section. 
The second kind of solution 

(3.6) 

corresponds to a stationarity point for the specific strain energy at which the body is 
in an isotropic state in terms of longitudinal strains. The (infinite) values of the Euler's 
angles corresponding to this solution are such that 

cos 202 = ~ 2c(I) - (e(II) + e(II!)) _ 1 
3 c(I) - (C(II)C;3 + e(III)S;J 

tan201 = C(I)C;2 + (C(II)C~3 + e(III)s;3) S~2 - (e(II)s;3 + e(III)c~3) . 
(C(III) - c(II)) S92 sin 283 

Finally, the following almost trivial solutions have to be considered 

(3.7a) 

(3.7b) 

where one of the three principal directions of orthotropy (e.g. xl) is also a principal 
direction of strain. The corresponding values of the Euler's angles are 01 = 82 = 0, 
83 = ±7r/4 (if Xl = xl - sol. Cl)j 81 = 7r/2, 82 = ±7r/4, 83 = 7r/2 (if xl = xII - sol. C2)j 
01 = 7r/2, 82 = ±7r/4, 83 = 0 (if xl = xIII - sol. C3). 
In order to understand which of these solutions correspond to absolute maxima or 
minima, it is necessary to compare the corresponding values of the specific strain energy 

2£a = >.I; + (k - A)II~ 
1 

2£b = >.I; + 2JLII~ + 3(k - A - 2JL)I; 

2EcI = >.I; + 2JLII~ + (k - A - 2JL) ( e(II) + C(Ill»2 /2 + e~I)) 

2£C2 = >.I; + 2JLII~ + (k - A - 2JL) ( c(Ill) + c(I»2 /2 + C~ll») 

2£ca = >.I; + 2JLIIE; + (k - A - 2JL) ( c(I) + C(II»2 /2 + C(IlI)) . 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.9c) 

It must be noted that the optimal solutions depend both on the strain field and on the 
material parameter :>..;21' which can be greater (material with low shear stiffness) or 
lower (material with high shear stiffness) than one, as pointed out in [3] for the plane 
stress case. The particular condition :>..;21' = 1 corresponds, as already seen, to the 
isotropic casej in this case the value of the specific strain energy is 2£;80 = At; + 2JLIIE;. 
Without loss of generality, assuming e(I) ;::: c(Il) ;::: e(Ill), the different possibilities are 
summarized in the following scheme 

• k ;::: A + 2JL : C(II) :::; (e(I) + c(Ill)/2 =} £a;::: ECI ;::: £C3 ;::: £C2 ;::: £b 

c(II);::: (C(I) + c(III)/2 =} £a;::: £C3;::: £CI ;::: £e2;::: £b(3.10a) 
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Figure 3.1. Specific strain energy vs. Euler's angles for k > ,\ + 2J.L (k = 40, ,\ = 6, 
J.L = 7; e(I) = 10, e(Il) = 5, eUII) = -5). 

• k ::; ,\ + 2J.L : e(Il) ::; (e(l) + e(III»)/2 => Eb ~ EC2 ~ EC3 ~ ECl ~ Ea 
e(Il) ~ (e(l) + e(IIl))/2 => Eb ~ EC2 ~ ECl ~ EC3 ~ Ea. (3.10b) 

It must be noted that c-type solutions never correspond to absolute maxima or minima. 
In Fig. 3.1 some plots of the specific strain energy (in dimensionless form) as a function 
of the Euler's angles are shown for a material with low shear stiffness. Stationarity 
points are also indicated. Fig. 3.2 has the same meaning, but refers to a material with 
high shear stiffness. 

4. CONCLUDING REMARKS 

The problem of finding the mutual orientations of the material symmetry axes and the 
axes of principal strains that maximize (or minimize) the specific strain energy, has been 
dealt with for generally orthotropic materials and cubic materials. In any case, optimal 
solutions require that principal stresses be collinear with principal strains (Eq. (2.10)). 
Even though the complete solution seems to be too involved to be analytically derived 
for generally orthotropic materials (Sec. 2), trivial and almost trivial solutions were 
obtained (i.e., solutions where at least one of the axes of orthotropy is collinear with 
one of the principal strains) - Eq.s (2.11) and (2.12); these solutions recover the results 
already obtained by other authors in the simpler 2-D case. 
For cubic materials (Sec. 3) the complete solution is found and it shown that, if the 
material has low shear stiffness, the most flexible solution is obtained if principal axes 
of strain and orthotropy are collinear, whereas the stiffest solution is characterized by 
equal axial strains along the axes of orthotropy (and vice-versa for materials with high 
shear stiffness) - Eq.s (3.10). 
The results here obtained are of particular interest for structures reinforced by three
dimensional arrays of fibers of equal properties embedded in a matrix (3-D fiber com
posites). When the global stiffness (or flexibility) of the structure has to be maximized, 
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Figure 3.2. Specific strain energy vs. Euler's angles for k < ,\ + 21-' (k = 10, ,\ = 6, 
{L = 7; e(I) = 10, e(II) = 5, e(III) = -5). 

the present analytical solution allows to optimally design the structure by properly 
orienting the fibers throughout the body. 
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o Introduction 

Standard structural optimization often treats a "cleanly" defined mathematical problem 
which not always can really match the underlying practical design problem. This for 
example relates to the only vaguely possible mapping of the real problem to a strict 
mathematical problem formulation. An often proposed relief is supposed in using the 
designers experience and insight to be introduced especially via interactive approaches. 
But practical experience for larger scale problems shows, that one could be easily lost in 
a tremendous bulk of data to be evaluated. So proper data condensation and data 
preparation techniques a required. In the following two examples with different 
applications are presented. 

1 Composite Material Selection 

Composite materials have due to their excellent specific stiffness and strength an 
increasing field of applications not only for air- and spacecrafts. They are different from 
"conventional" isotropic materials, because they can be tailored by the selection of 
fibers- and matrix-systems and especially by the geometric variables of fiber orientations 
and ply thicknesses . For many kinds of requirements today composite optimization 
programmes are available, which determine for minimum weight the orientations and 
ply thicknesses under constraints like strength, stiffness, and thermal expansion,but with 
preselectcd material system. 
TIIC optimization problem gets more complicated, when the material system becomes an 
additional variable to be determined optimally from a material data bank. A formal 
treatment via discrete optimization is out of scope because of unreliable algorithms and 
computational effort. So the automatic material selection is algorithmically supported by 
first constructing continuous interpolation functions over the material data base and then 
using a "pointer variable" going through this interpolations in parallel to the geometric 
design variables, leading to a continuous nonlinear optimization problem. After solving 
this problem, the material with an actual "pointer variable" being most closely to the 
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detennined one is selected. Then, the optimization problem for minimum weight of a 
laminate reads : 

n 

mini f(ti.Pi) = L Pioti I gj(ti.Pi,<Xi)$ 0; j=I,mJ 
i=l 1-1 

(ti = i-th ply thickness; Pi = i-th density; (Xi = i-th ply orientation) 
P is the "pointer variable" and t and (X are the geometric variables for the m layers. 
Fig.l-l shows the section-wise linearized strength of the data base in table 1-1. All other 
properties have to be arranged in the same manner. It is worthwhile to mention, that the 
here choosen "pointer variable" must not necessarily be the density, but could be any 
other property, for instance Youngs modulus E. But for weight optimization the density 
as variable makes results directly interpretable. 

C\I . • E 
E --Z 
~ 

..c: 
0, 
c: 
~ 

Ci5 

1.600 

1.400 

1.200 

1.000 

0.800 

0.600 
1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

Density [ g/cm**3] 

Fig. 1-1 Linearized strength over density as "pointer variable" 

Aramid CFRP Glass 
Kev1ar49 T3QO M-40 GY-70 E-Gla~ S--Gla_s 

p [g/cm**3] 1.38 1.58 1. 61 1. 74 1. 99 2.04 

OJ.z [N/mm**2] 1380 1450 1100 750 1200 1780 

OJ. 0 [N/mm**2] 275 1400 1100 700 700 700 

~z [N/mm**2] 27 55 50 40 65 65 
G20 [N/mm**2] 138 170 150 130 150 192 
'1:12 [N/mm**2] 44 90 75 70 62 62 
El [KN/mm**2] 75.8 135 220 290 83 53.8 
E2 [KN/mm**2] 5.5 10 7 5 46 13.4 
G12 [KN/mm**2] 2.0 5 5 5 13 4.46 

V [-] 0.34 0.27 0.35 0.41 4.36 0.29 
(Xl [1.e-6/Kl -4 -0.6 -0.8 -1 6 6 
(X2 [1.e-6/Kl 50 30 30 30 26 26 

Table 1-1 Databank of 6 different materials 

In the following a simple example is given for a 2 layer composite with 2 load sets and 
the requirement: Find optimal thicknesses, angles and related materials out of databank, 
such that ° the weight is minimum 

° Stiffness E ~ 400000 N/mm 
° strength criteria is satisfied under applied loads 

Fig 1-3 shows the input (weight: 16.0 kg/m2) and results (weight: 5.23 kg/m2). 
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It is noticable that layer 1 with p=1.73 g/cm3 is close to the material with the highest 
Youngs modulus and so contributes to the stiffness requirement. Layer 2 is in the 
neighbourhood of a material with a much smaller Youngs modulus but significant higher 
strength and therefore makes the composite stronger. The right discrete material 
decision only the user can make, is to use GY -70 for layer 1 and M-40 for layer 2 with 
the corresponding optimal orientations and thicknesses. 

Data bank 

E i = Ei (Pi) 

oalli sOall, i (p) 

Evaluation of Optimizer 
changes stress deflections and 

Optimizer 
changes 
a, t, ai,t i , ~ stiffnesses 

no 

I' I 

Discretisation 

of Pi 

Fig 1-2 Flow diagram of optimization with material selection 

Input: LC 1 : Nx= 200 N/mm 

LC 2 : Ny= 500 N/mm 

Layer 1: tN 
u = 20° Y 
t /= 6 nun 

Pl=l~ '~I~ 
Laycr2 Nx 

u2= 80° 
t 2 = 4mm 1 
p 2 = 1.6 g/c~ , 

Optimization Results; 

Layer 1 : 
p= 1.73 g/cm**3 
t = 1.35 mm Material:GY-70 
ex= _1° 
margin of safety : 0 % 

Layer 2 
p = 1.61 g/cm**3 
t = 1.8 mm Material :M-40 
ex= 89.9° 
margin of safety: 37 % 

E = 399232 N/mm 

Fig 1-3 Two layer composite 
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2 Postprocessing of tile optimization results 

Special emphasis should also be given to a kind of postprocessing after any kind of 
structural optimization, which then serves for further understanding of the underlying 
design problem and for guiding a probably necessary mathematical reformulation. This 
postprocessing is based on different steps: 

• Evaluation of the Lagrangian multipliers Ai. 
• Estimation of the new objective function and design variable values for changed 

problem parameters. 
• Establishment of design change vectors with special purposes. 

Those tasks can all be done by the optimization postprocessor INFO /2/, which needs for 
those calculations - except one task - only the present optimization results and gradients. 

2.1 Identifying the "costs" of constraints 

The evaluation of the Lagrangian multipliers Ai in order to identify the "costs" of 
constraints is the first step of the presented optimization - postprocessing. 
If a better value of the objective function shall be obtained, it is most efficient to increase 
the level of those constraints with the greatest Ai. 
Example: Ten bar truss, stress constraints; The optimal weight shall be decreased. For 
which bars should be used materials with better physical properties? 
The Lagrangian multipliers can be evaluated by the solution of the Kuhn-Tucker 
conditions 2-1, which are necessary conditions for non-convex problems and adequate 
conditions for convex optimization problems. 

Vf(x°Pl) - A(~.OPl).2l. == 0 A==[Vg\,Vg2, ... ,Vgm.J 
gj(~.OPl) ~ 0 j == I,m 

Aj' gj(XOPl) ::;: 0 ; Aj~O j ::;: I,m 

stress A. weight difference for 10% increase of stress 
constraint 1 allowable bar i [%] 

bar 8 -1231 2.01 

~ 
bar 4 -1150 -2.03 
bar 2 -963 -1.74 
bar 3 -783 -1. 34 
bar 1 -737 -1. 21 
bar 6 -616 -1. 02 ~" 
bar 5 -17 -0.02 

• 1 J F1 6 F2~ bar 7 -0.2 -0.42 

Tab 2-1 Ai (ten bar truss example) 

2-1a 

2-1b 

2-1c 

Tab 2-1 shows the Ai of the ten bar truss example. The second column of the table 
contains the rate of change of the objective function caused by a 10 % increase of the 
stress allowable belonging to the bar. It is obvious that the increase of the stress 
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allowables of those bars (bar 4, bar 8) with the highest Ai causes the greatest 

improvements of the objective function (2 %). 
In most cases the number of optimization variables is not equal to the number of active 
constraints rna, so that the coefficient matrix 6. in 2-1a is not quadratic. 
For (rna> n) n of rna linear independent gradients of constraints have to be choosen. In 
the case of (rna < n) the Ai can be computed by several methods : 

" Choosing rna of n equations in 2-1, so that A becomes quadratic. 
" Activating non active constraints, so that ~ b1comes quadratic: 

gj =...s...- - 1 ~ ° ; Sail ~ S 
Sail 2-2 

" The compensation method : 
min IIRII = II Vf - A"A II 2-3 

The accuracy of the results provided by methods 1 and 2 depends highly on the set of 
choosen equations respectively activated constraints, while the compensation method is 
the most reliable method. 
Experience shows, that the Langrangian multipliers are very sensitive according to the 
obtained accuracy of the computed optimal design. 

* Optimum £,pt Difference x 
weight [KN] 5.476 5.4615 -0.27 % 
cross sectional area bar 5 [mm**2] 944 1003 +6.3 % 
cross sectional area bar 7 [mm**2] l30 126 -3.2 % 
cross sectional area bar 8 [mm**2] 3370 3374 +0.12 % 
A. (a bar 5) 20.8 -16.8 -181 % 
A. (a bar 7) -2.56 -0.192 +93 % 

A. (a bar 8) -1230 -1231 +0.08 % 

Tab 2-2 Ai for two different design vectors near the optimum 

E.g. the Lagrangian multipliers of the ten bar truss have been evaluated for two 
different design points: the optimum ~opt and a point ~* lying very close to the optimum 
(difference of the objective function values: 0,27 %). Tab 2-2 shows the results: The 
differences of the Ai are much higher (up to 181 %). The positive value of A5(~*) 
indicates a non optimal design vector, although ~* is a satisfactory solution of the 
optimization problem. 

2.2 Problem Parameter Sensitivity Analysis 

After evaluation of the Lagrangian multipliers it has been decided to relax the constraint 
with the highest Ai to obtain a great improvement of the objective function. (Ten bar 
truss: increase of stress allowable bar 8, see Tab. 2-1). 
We want to estimate the new optimal objective function and design variable values for 
the increased value of the stress allowable bar 8. 
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In general: We refer to the estimation of the current design vector ~ due to changes of 
parameters oP like constraint levels (stress allowables, deflection-, frequency bounds 
etc.), structure loads and other fixed parameters of the formulation. 
The standard approach is simply to change the parameter and then reoptimize the 
problem. This method provides solutions with the highest quality, but of course it is 
computationally expensive. So we have to find a more efficient method to estimate the 
new design vector. The Expanded Design Space Method (EDSM) which has been 
proposed by Vanderplaats /1/ is such a method. It has got the advantage, that maximally 
one additional structure analysis is needed. 
The method is to introduce one additional design variable Xn+l = P according to the 
problem parameter P and then perform a single step of the feasible directions algorithm. 
The actual step length depends on the value of oP. For the calculation of the search 
direction we need except the existing derivatives of/OXi and ogjlOXi only the derivatives 
of the objective functions and constraints with respect to the problem parameters: of/dP 
and ogjloP. In many cases this derivatives can be determined very easily by simple 
considerations: 
For example the structure loadvector .E is the problem parameter: .El = P • .Eo ; thcn for 
the objcctive function (structure weight) can be said : of/oP = O. For the derivatives of 
the active stress constraints we get 

P·a· 
g.= __ J -1:::;;0 
J aj,all 

og' 
~ _J=l 

oP 2-4 
If thc determination of the derivatives by simple consideratons is not possible, they can 
be computed by the finite difference method with one additional structure analysis. For 
the ten bar truss the quality of the estimations can be seen in fig. 2-1. Fig.2-1 a shows the 
optimal weight with respect to the change of the stress allowable bar 8 estimated by 
EDSM versus the exact optimal objective function. 
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Fig 2-1 Estimation of the weight (a) and cross sectional area bar 8 (b) 
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As supposed the estimation fonns a tangent line to the curve of the exact objective 
function. For changes up to 20% of the stress allowable bar 8 the error is lower than 
1.5%. Fig.2-lb shows the estimated versus the exact cross sectional area of bar 8. 
Investigations of further examples show, that for typical structures and changes of the 
problem parameters up to 20% the EDSM provides reasonable estimations for the new 
optimal design vector and related optimal objective function. 

23 Design change vectors with special purposes 

In many cases the mapping of the real design problem to a strict mathematical problem 
fonnulation is only vaguely possible. The results of those optimizations are often not 
satisfactory, because for example only the most important of some different objectives 
had been taken into account, while other objectives were put at a fixed value and handled 
as constraints. 
In such cases it is a relief to use the designers experience and insight to perfonn -
algorithmically derived - interactive design change vectors with special purposes. By this 
way the optimization results can be improved step by step. 
Those design change vectors can have different purposes, for example: 

a) Leading from an unfeasible (.!J to a feasible design rr; with a minimum increase of 
the objective functions value. 
The search direction ~ results from the solution of the linear optimization problem 

min {Vrro§. I gj+VgjTo~~O; j=l,m} 
§. 

L-------~---1~~ 

Fig. 2-2 Step from an unfeasible to a feasible design (2-dim. problem) 

2-5 
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b) Maximum improvement of a second-objective which has been treated as a 
constraint. 
The objective function's value is low enough but the second objective treated as 
constraint gj isn't yet satisfactory. The problem is to achieve a maximal improvement of 
constraint gj while accepting an exactly defined increase E of the objective function value. 

The search direction §. results from the solution of the linear optimization problem 

min {VgjTe§.IVfTe§.::;E; VgjTe§.::;O ; j=l,m;j;t:i} 
£ 

~--------------------~----~X1 

Fig. 2-3 Improvement of the constraint gl (2-dim. problem) 

2-6 

Example: Ten bar truss; 10 stress constraints and 1 deflection bound (node 6). The 
optimal weight is 6.34 KN ; the deflection constraint has the upper-bound value of 100 
mm. To which value can the deflection be reduced, if an increase of weight from 6.34 
KN to 7.00 KN is accepted? From the solution of 2-6 results an estimated improvement 
from u = 100 mm to u = 86.7 mm. (The exact value is u = 88.5 ). 
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Abstract: The use of advanced materials (ceramics. ribres. semiconductors) will be indispensable to future 
developments of numerous industrial branches. It is especially the material behaviour which for this 
reason has to be carefully considered in order to find optimal layouts of components and design vari
ants. i.e. various kinds of failure and reliability criteria must be taken into account. Thus. the common 
deterministic optimization has to be extended by discrete and stochastic algorithms. For that reason. 
particular material values and their laws have to be described by means of distribution functions. In 
this connection it is important to establish appropriate stochastic optimization algorithms. latest results 
arc shown for a special component made of glass-ceramics as parI of a large mirror. 

I. INTRODUCTION 

For a material to possess just one outstanding property is not generally sufficient in 
engineering applications; the overall behaviour with regard to a range of different 
properties is usually more important. The complexity of factors involved in finding 
"optimal" layouts and/or materials to use in different applications indicates a general 
increase h the importance of cooperation between material specialists, designers, and 
mechanicians. An essential improvement of the component behaviour at certain load 
combinations is achieved when not only the optimal design can be found but when 
corresponding optimal material properties or the optimal reliability of a component at 
given real material characteristics can be established as well. When carrying out reli
ability analyses for structures made of advanced materials, the material properties play 
an increasingly important role. A typical example of relevant material properties is the 
highest possible yield point. 
During the last years a number of important papers on the probability and reliability 
theory in structural mechanics have been published, e.g. by E. HAUGEN [1], I. ELISHA
KOFF [2], G. SCHUELLER [3], P. THOFT-CHRISTENSEN and Y. MUROTSU [4], R.E. 
MELCHERS [5], D. FLADE [6]. The decisive breakthrough in applying stochastical pro
cedures in structural optimization is still to come although some fundamental papers 
have been published by mathematicians, e.g. by MARTI [7], KALL [8] and PREKOPA [9]. 
FREUDENTHAL [10] built up models using approaches from probability theories in order 
to describe the breaking behaviour of brittle materials. Special stochastic optimization 
problems applied to the design of structures can be found in [1n to [15]. In the 
following, a special type of ceramic materials, the so-called glass-ceramics, are in
cluded into the analyses for a mirror structure and its optimal layout. 
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2. MECHANICAL PROPERTIES OF GLASS-CERAMICS 

2.1 Theoretical and Practical Strength of Ceramics 
In the case of ceramic materials there is an essential difference between the theoretical 
strength ° and the experimentally determined practical strength. GRIFFITH found the 

th 
relation for the theoretical stress 0th= (2Ey/bd»V2, where I denotes the half length 
of an elliptical crack within a body, y is a special energy expression, E is the YOUNG's 
modulus [16J. Using the average numerical values E = 10 5 N/mm2 , y = 10-3 N/mm and 
I = 3 ' 10-7 mm, this approximately yields to 0th = 1.5 . 104 N/mm2 . The theoretical 
strength of a solid body approximately is 115 to 1110 E. In practice dense ceramic 
materials as quartz-glass have tensile strengths up to SO to 100 N/mm 2. These values 
are not constant, but depend on the special matrix of the material. 

2.2 Statistical Definition of the Strength 
The evaluation of the strength tests follows from statistical methods. Hereby, the 
stress of a component is determined by the weakest point inside the component, 
which usually can be approximated by a WEIBULL-distribution (Fig. O. This belongs to 
the "extreme value distributions" or asymptotic distributions of the FISHER-TIPPETT
type. By means of the "weakest-link-theory", a WEIBULL-distribution can be given for 
the reliability P R = t - P F (PF = failure probability) for the one-dimensional stress
state as follows [27] 

where ° denotes the stress and 00' 0u and k material constants; 0u gives the stress 
with the failure probability 'zero' and k is the so-called WEIBULL-modulus, a measure 
for the scattering. By extending to a multiple-axes stress-state, the following expl'es
sion is valid: 

- [( 1 ) (l)k 1 f (k k k) ] P R - exp - kf ~ V 0\ + 02 + 03 dV (2) 
c V 

with the material constants Vc ' ° c' k and the principal stresses ° i (j = 1, 2, 3). The in
tegration considers positive principal stresses only. This failure model does not cover 
the mutual influence of the principal stresses on the reliability which may lead to an 
overestimation of the reliability. 

2.3 Normal Stress Hypothesis 
In order to evaluate a multiple axes stress state in a component, a single axis reference 
stress Cl p is usually defined. There are several strength hypotheses for determining 

(\ 
Cx (xl I':' distribution of the f: distribution of the 

m:~ _mall ... ""come valu .. J \ hiSh .. , =tram. vain .. 

j: illfi~ oo'mol di .. "bU'iO) \, ;:~:::~'::: ~~ 
a rea of the. 

smallest values 
area of the 

highest values 
x 

Fig. 1 Extreme-value 
distribution 
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the reference stress. Each of these hypotheses has a limited range of validity. For 
brittle materials, like the q~artz-glass used here, the normal stress hypothesis accor
ding to RANCINE and LAME is taken as a basis because these materials do not have a 
distinct yield point and the failure is caused by separation fracture. The normal stress 
hypothesis states that the largest occuring normal stress causes the fracture: 

(3) 

2.4 Stochastic Material Parameter 
An important characteristic of ceramics/glass-ceramics is the large scattering of ma
terial parameters. The scattering for each parameter can be considered by a distribution 
function. For the YOUNG's modulus E, the WEIBULL-distribution D(E) reads as follows 

D (E) = 1 - exp [-( ~ t ], 
with the parameters k and oc. 

3. SOLUTION CONCEPT FOR THE OPTIMIZATION 

3.1 Mathematical Definitions 

(4) 

The present structural optimization task shall be considered as a Multicriteria-Opti
mization-Problem (MC-Problem). A continuous, deterministic MC-Problem can mathe
matically be defined by the following formulation [24, 26]: 

with the symbols 

"Min" {f(x) I hex) = 0, g(x) ~ O}, 
XEIRn 

IRn set of real numbers, 
f vector of m objective functions, 
xEIRn vector of n design variables, 
g vector of p inequality constraints, 
h vector of q equality constraints 

and X:= {XElRn I hex) = 0, g(x) ~ O} 
"feasible domain" where,;; is to be interpreted for each single component. 

3.2 Problem Definition 
a) Design Variables 

(5) 

Fig. 2 illustrates the structure of a circular mirror plate with the follOWing continuous 
(c) and discrete (d) design parameters: 
- mirror shape (circl~, rectangle, hexagon), 
- core cell structure (quadratic, triangular, hexagonal), 
- cell size or rib distance <C,d), 
- height of cell structure (c,d), 
- thickness of layers (c,d), 
- thickness of boundary stiffening (c,d), 
- arrangement of the supports (d)' 

b) Objective Functions 
The following objectives are chosen: 
1) Weight of the mirror plate 

f1 (x) := WM · (6) 

Maximal cell size and minimal thickness of the cell walls and layers (Fig. 2) are the 
essential design parameters in order to reduce the weight of the mirror plate. 
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Fig. 2 a) Design parameters of a mirror plate 
b) Point-supported mirror plate 

2) Surface accuracy 

¥(4) ~ I , 

The accuracy of the mirror surface can generally be described by the following 
standard deviation as a cri terion [23]: 

f 2 (x) : = rms = [ vTvJ~ 
n-q 

with v vector of the deformations from ideal surface, 
n number of nodal points, 
q number of degrees of freedom. 

c) Constraints 

For the optimal layout, the following constraints have to be taken into account: 
1) Qui! ting-effect [ 23] 

(7) 

The so-called quilting-effect plays an important role as far as the surface accuracy 
is concerned. The surface of each core cell is slightly deformed (pillow shape) by the 
polishing load. This pillow-shaped deformation leads to a periodical deformation of 
the total mirror surface. The mean square deviation of the surface deformation can 
be estimated by the bending of an quadratic plate clamped at all edges: 

with 

g, (x) : = q rrns = 

3 
~ 
1- \1 2 

2) Failure criteria 

P a4 ~ 
c....c...::....: ;; _1\- (A = 633 nm) (8) 

K f 40 

plate stiffness of the front plate, 

polishing load ( p R:l 0,5 NI cm2), 

inner lateral length of the quadratic cell core, 
constant factor from rms-calculation (c R:l 0,004 to 
0,006), 
thickness of a front plate. 

The normal stress hypothesis according to (3) 

(9) 
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and the failure pl"Obability according to (2) with Pp = 1 - P R 

g3 (x) = 1 -

are chosen. 

3) Constraints of design parameters (bounds) 
The terms for the most important quantities are given in Fig. 2a: 

- cell size (quadratiC> or rib distance (open structure), 
~ thickness of the upper surface layer, 
- thickness of the lower surface layer, 
- rib thickness, 
- thickness of boundary stiffening, 
- core height. 

3.3 Structural Analysis 

(10) 

Because of the requirements mentioned above, we chose a porous, orthotropic linear
elastic plate as a basis for the structural analysis calculations. In addition to calcu
lations by the FE-methods SAPV or ANSYS, an analytical approach for a point-sup
ported circular plate was used. Fig. 2 shows the arrangement of point supports for a 
circular plate with constant plate thickness. 
The differential equation of a point-supported plate is given by [25] 

k 
_F ___ F_ L ~ ~ (cp _ ...ll!L) 
K o1ta2 Kok j=1 b k' 

6.6.w = 01l 

with l) = Delta-functions, Ko = plate stiffness for rectangular stiffened circular 
plate, a the radius of the plate, b the radius of the support circle and the load F = p1ta2 

with the uniform pressure p. Development by Fourier-series 
k 00 

~ ~(cp- 2~1t ) = ~ + L am cos(kmrp) (2) 
)=1 m=1 

with 

leads to 

k 

a = _1 "" m 1t L 
j=1 

~r ~ ( cp - 2L1t ) cos(kmrp)d rp = ~ 
o 

co 

L cos(kmrp). 
m=1 

The solution is carried out using the following approach [25] 
00 

(3) 

(14) 

w(r, rp) = L w m(r) cos(kmrpl. (15) 
m=O 

The examination of the calculated retults by means of the Finite-Element-Method 
shows a good accord for the relation a ,; ~ with h as the height and the radius a of 
the plate. 

3.4 Treatment as a Discrete Optimization Problem 
Because of different discrete variables (e.g. number of supports) the given problem 
shall be treated as a discrete optimization problem. The discrete optimization problem 
differs from the continuous one in so far as the design variables may take on values 
only from a given discrete set of values. This yields an incoherent design space with 
a finite number of points (Fig. 3). 
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In analogy to the continuous problem. the discrete optimization problem is defined as 
follows [18. 26]: 

"Min" {f(x)}, Xd := {XEIR" I xl E Xi; i = 1 •...• N; g(x) ~ 0 ; h(x) = A}, (16) 
XE".:! 

Xj := {xP), x?) •... x1"O}' XiC IR V i = 1 •...• N. 

where Xj denotes the set of all nj discrete values of the i-th design variable. Since 
the discrete. n-dimensional design space 

(17) 

contains a finite number of points only. every discrete optimization problem can be 
transformed into an integer optimization problem with xi ~ mi' m i E Mi := {t. 2 •...• n i} 
and with the integer vector mE M. 
The integer gradient procedure (IG-Procedure) according to CHANARATNA et. a1. [17] 
can be used for solving integer and. by this. discrete constrained optimization problems. 
The basic idea of integer problems is to gain an appropriate search direction at the 
point m (k) in the form of an integer gradient by forming differences with integer 
gradient points. The standardization and rounding of the components yield the integer 
search direction shown in Fig. 3. in which one-dimensional minimization steps are car
ried out 

(18) 

This basic algorithm can further be improved by combining it with other search pro
cedures (subsequential-search. adjacent-point-search [18]). Since this procedure does 
not consider the feasibility of the point mk. it is advisable to introduce a substitute 
objective function for constrained problems by means of an augmented penalty fUnc
tion [18]. 

3.5 Control of the Failure Probability 

The inclusion of the failure probability into the optimization process means a con
siderate increase of the computation effort. Therefore. an approximation method of 
first order shall be demonstrated to show how failure probabilities of any density 
function can be calculated with a justifiable computation effort. 
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The failure probability is defined by the relation: 

Pf = f d(x)dx with DF = { xl g(x) < O} (9) 

DF 
as the failure range in the space X E IRn. The continuous variables x with random sto
chastic properties and the known density function d(x) as well as correlated and un
correlated variables are known. 
From (9) one can see that the essential task of the probability theory is the calcu
lation of multi-dimensional integrals. These calculations show some characteristic 
difficulties. This leads to the fact that the standard integration methods, i.e. the nu
merical integration and the Monte-Carlo technique, cannot be applied without modifi
cations. A method has been developed basing upon the theory of asymptotic LAPLACE
Integrals. Since this theory is used in our investigations, it shall shortly be considered 
in the following. 
By the relation 

y = T(x) , (20) 

a transformation to the standardized normally-distributed and uncorrelated variables 
y is achieved. If this transformation is fulfilling special conditions [19] the follow
ing expression is valid 

Pf = f d (x)dx (ZO 

Dp= (xl g{x) < 0) 

with CP(Yi) for the standard normal density function. This transformation is advanta
geous in so far as the variables Yi are uncorrelated and the density function is the 
multi-dimensional standard normal distribution. It can be seen as a disadvantage, how
ever, that because of the transformation the integration range llF is considerably "more 
complicated" than the range DF' The transformation is given generally by the ROSEN
BLATT-Transformation, but for uncorrelated variables it is simplified to 

Yi = <l>-l(Di(Xj», (22) 

where D j denotes the distribution function of the variables xl and <l> the standard 
normal-distribution function. 
According to [201, for the integral 

H).,) = f exp()., <l>(x) go(x) dx (23) 

DF 
the approximative solution for ),,>1 leads to 

(Z1t){n-O/2 go(xo) exp()., <l>(xo» 
)., (n+O/2 

H).,) = (24) 

Hereby J is a matrix containing the principal curvatures of the failure surface [ZO, 211. 

Using this equation one can state the following failure probability [21]: 

where 

R 
Pf RJ <l>(-~) ITO - xr )-t/2, (25) 

r=l 

~ = ly*1 = Min«yTy) 1/2 I h(y) = O} 
y 

(26) 

is the minimal distance between the failure area h(y) = 0 and the ongm of the stan
dard normally-distributed variables and Xr are the principal curvatures of the failure 
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area in the point y*. By neglecting the influence of second order terms, the approach 

Pr "" 11>(-[3) (27) 

is valid which corresponds to a lineariz.ation of the failure area in the point y" and to 
the succeeding integration over the above described linear' failure area. With more 
than one failure criterion given, a failure probability can be stated for each criterion. 
The total failure probability can be approximated by various procedures (see [22]), 

4. NUMERICAL RESULTS OF A MIRROR PLATE 
4.1 Comparison of Continuous and Discrete Optimization 
Some results of optimization calculations for the continuous, deterministic MC-Problem 
and for the discrete, deterministic MC-Problem are shown in Fig. 4 as functional-effi
cient boundaries. Quartz-glass with the material parameters E = 72500 N/mm2, \I = 0.17 
is chosen as material. Every point on a functional-efficient boundary corresponds to an 
optimal design. The number of support points is chosen as k = 3, 6 and 8. The distance 
between the functional-efficient boundaries clearly shows the improvement by increas
ing the number of support points. An larger number of support points ;,. 6 does not 
lead to an improvement. Therefore, the maximal feasible value is always assumed for 
the optimal design. Further calculations are to consider more than one support circle 
with the total number unchanged. The optimization shall then find the best possible 
distribution of points. The areas of the functional-efficient boundaries from 0 to 5 nm 
and from 40 to 60 nm are weakly-efficient solutions and therefore only theoretically 
important. The comparison of the designs of the continuous and of the discrete opti
mization model shows that unfavourable results are achieved in the case of discrete 
variables due to the limited design space. A functional-efficient boundary in the form 
of a continuous and monotonic decreasing function cannot be defined. By comparing 
the influence of single variables, it becomes obvious that the rib thickness of the ex
amples shown in Fig. 4 always takes on the lower limit of 1.0 mm. The value increases 
above 1.0 mm in the weakly-efficient area from 0 to 5 nm only. The optimal radius of 
the support circle for all designs with 6 support points is found with a value of about 
100 mm .• n the first place this value only depends on the number of support points 
and on the material used. 
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Fig. 4 Functional-efficient boundaries for the point supported mirror 
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Fig. S Dependence \.If P F = P(rms > 10 nm) on the WEIBULL-parameter k of the dis
tribution of the YOUNG's modulus. 

4.2 Calculations of the Reliability of a Chosen Design 
In order to apply the reliability calculation presented in 3.5, the following failure pro
bability is calculated fOI' the design no. 1 shown in Fig. 4 

P F = P (rms > 10.0 nm). (28) 

The following stochastic model is used: 
- thickness of the upper layer x (1) , normally-distributed, with the expected 

value E[x(1)] = 1.3 mm and the variance V[x(1)] = 0.13 mm, 
- thickness of the lower layer x(2), normally-distributed, with the expected 

value E[x(2)] = 0.5 mm and the variance V[x(1)] = 0.05 mm, 
- YOUNG's modulus, WEIBULL-distributed, with 1 < k s; 20 and the expected 

value of 72500 N/mm 2 . 

Fig. 5 shows the dependence of the failure probability on the parameter k of the 
WEI BULL-distribution. If one demands P F < 0.01, k > 12 has to be demanded of the 
material. By reducing the variances of x(1) and x(2), a reduction of P F is possible. 
This, however, increases the production effort. 

S. CONCLUSION 

In order to improve the properties of high-efficient ceramics, the modelling of the 
structure plays a key role. As such, by optimizing the structure, it is possible to in
crease the absolute values of the properties, to decrease their scattering and to gain 
defined property values for special load cases. It is of equal importance to optimally 
model the component in view of "appropriate-for-ceramics" designs for special demands. 
This means that the scatterings of the properties have to be considered in the design 
process even if they are decreased by means of different measures. 
The solution concept for the optimization is represented by a point-supported mirror 
plate as a special component with multiple objectives. Completing the results, a 
calculation of the reliability of the chosen designs is carried out. 
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SHAPE OPTIMIZATION OF FRP DOME CLOSURES UNDER 
BUCKLING CONSTRAINTS 

J. Blachut 
Department of Mechanical Engineering, 

University of Liverpool, 
P.O. Box 147, 

Liverpool 

Recent references [1-4] provide exhaustive documentation on shape optimization 
of pressure vessel end closures under either static internal or external pressure. 

Two shape optimization trends are apparent within internally pressurized dome 
ends but, with little emphasis on buckling constraints. In the first group, 
meridional shape of a dome closure is assumed to be fairly arbitrary as is 
illustrated in Refs. [5-7]. For example, optimal shape of a head, being 
approximated by two cubic segments, is sought via finite element approach in [5], 
under the von Mises stress constraints. The meridional shape of a CFRP filament 
wound end closure is approximated by B-splines in [6]. The membrane stress analysis 
shows how the Tsai-Wu failure index levels-out for an optimally shaped head. Buckle 

free meridional shapes are discussed in [7] for elastic cases. In the second group, 
the meridional shape is restricted to commonly used single or double knuckle 
tori spherical or ellipsoidal shapes. This is mainly due to practical and safety 
requirements. An example of minimizing the maximum shearing stress in an elastic 
single and double knuckle tori sphere is given in [B]. Limiting shape again to the 
single or double knuckle tori sphere, the maximum limit load is searched for in [9] 
using sequential unconstrained minimisation techniques. 

Opt i ma 1 shape des i gn of externally pressuri zed dome closures under buckl i ng 
constraints has received even less attention than the internally pressurized heads. 
Their inherit sensitivity to initial geometric imperfections and large disparity 
between experimental and theoretical predictions make the analysis a still more 
important task than optimization [1,10]. 
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It seems however, that some practically relevant shapes can be obtained 

through optimization of commonly used single knuckle steel heads. Elastic and 

elastic-plastic tori spheres which withstand maximum or minimum buckl ing pressures 

are obtained numerically in [12] and experimentally verified in [13]. A similar 

problem is considered in [14] where the wall thickness varies in a step-wise manner. 

Some recent numerical and experimental studies into application of composites 

in externally pressurized vessel end closures have been reported in [15,17]. Only 

commonly used shapes, i.e. hemispherical, tori spherical and ell ipsoidal, are 

considered. The three ways of manufacturing such components, i.e. vacuum 

bag/autoclave, filament winding and resin transfer moulding, are discussed. Whilst 

feasibility of these three routes is still under investigation, it seems that the 

meridional shape of an axisymmetric pressure vessel end closure is no longer a 

practical obstacle. Whichever way of vessel manufacturing is adopted one has to 

manufacture fi rst a mandrel for vacuum bagging/fi 1 ament winding or an appropri ate 

moulding tool for Resin Transfer Mode (RTM). Accurate machining of the meridional 

shape in a male or female mould in a variety of materials is no longer a great 

difficulty. The shape of a composite dome closure will follow the previously 

machined shape simply by virtue of a replica cast (see [15,16] for details). 

This ease of mandrel manufacturing makes optimal shaping of a meridian quite 

attractive from a practical point of view. 

We assume in this paper that the meridional shape is composed of a number of 

circular segments which are convex to external pressure and that there is no shape 

discontinuity, up to the first derivative, at the adjacent segments. 

The objective is to maximize the buckling pressure for a quasi-isotropic 

composite lay-up. The optimization technique is the complex method of Box using 

BOSOR4 code as the re-analysis tool. 

2. Preliminaries and Problem Statement 

Let us consider an axisymmetric pressure vessel of constant thickness t and 

diameter D subjected to static external pressure p (Fig. 1). Its meridional shape 

is formed from N-l individual segments y(i) which are joined at knots 2,3, ... ,N-l 

with a continuous first derivative. These segments are assumed to be circular and 

convex to the appl i ed pressure. The above requi rements on meridional shape can 

formally be stated as follows: 
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continuity at internal knots 

y(i)=y(i-l), i=2,3, .... ,N-l 

continuity of the first derivative at these knots 

y'{i)=y'(i-l), i=2,3, .... ,N-l 

individual segments convex to external pressure 

y"(i):sO, 

boundary conditions 

XI = D/2; 

i=I,2, .... ,N-l 

YI = 0, 

Y'I = -." 

y' N = 0. 

( 1 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

Let us start construction of the multi segment meridian from the clamped edge 
(knot 1) and move towards the apex (knot N, see Fig. 1). 

Figure 1 

N N-1 

, YlN-1) 

Yfil = YCj .!rj2- I XI il-XC/ 
I Circular Segment I 

---. 
X 

Geometry of a dome closure 

The circular segment passing through knots 
derivative at the knot i, is written as: 

and i+l, with the first 

(7) 

(8) 
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(9) 

Assuming that coordinates (xi'Y j)' (X j+I'Yi+l) of the first two knots and the 
derivative fj are given then the eqs. (7-9) can be expl icitly solved for r j , the 
radius of the segment: 

(10) 

and for coordinates of the curvature center (xc j ,yc j ): 

f-!L, 
1 + fj Z 

(11 ) 

yc. =y. - r.~. 
1 1 1 1 + f; 2 

(12) 

Before moving to the next segment, which is spanned between knots i+l and i+2, 
we calculate the slope at the knot i+l from eq. (8). This end slope is used in 
setting up equations for radius and center of curvature coordinates of the adjacent 
circular segment y(i+1). 

The above procedure continues until we reach the knot N-1. The final circular 
arc is drawn using the apex boundary conditions xN = 0 and y'N = O. 

It becomes clear from eqs. (4-9) that coordinates (xz;yz), (X3;Y3)""'(XN_1 ; 

YN-I) expl icitly define the meridional shape while YN remains an impl icit one, 

depending on the vector R = (xz'yz, .... 'XN_I'YN_I). 

Our aim is to find such location of these 
in a multisegmental axisymmetric head, which 

buckling pressure Pm = Pm/PH' i.e. 

max (min Pm) 

RcO m=I,2,3 

N-2 knots, (xz ,Yz)' .... , (xN -I 'YN -I)' 
maximizes the lowest dimensionless 

(13) 
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where, 
PI is bifurcation buckling pressure, 
P2 is axisymmetric collapse pressure, 
P3 is First Ply Failure (FPF) pressure, based on the Tsai-Wu failure criterion, 
PH is bifurcation, collapse or FPF pressure for a hemisphere (whichever is 

smaller) . 

Domain 0 contains 2(N-2) admissible coordinates of internal knots: 

(14) 

(15) 

satisfying constraints (1), (2) and (3). 

3. Single Knuckle Dome (N=3,D/t=500) 

Analysis carried out in [17] shows that buckling (m=I) or axisymmetric 
collapse (m=2) are the controlling failure modes in a pre-preg Carbon Fibre 
Reinforced Plastic dome (CFRP) having D/t = 500. This eliminates the FPF mode (m=3) 
from eq. (13). However, all optimal solutions are checked against the First Ply 
Failure pressure based on the Tsai-Wu criterion to ascertain their FPF safety. 

We consider here a symmetric [0/60/-60]~ lay-up of CFRP material having 
[1=[2=70 kN/mm2, G1z =5 kN/mm2 and lJI2 =lJ21 =0.1. The analysis methodology used in 
ref. [17] is appl ied here. 

Different bounds are assumed for the domain 0 in the examples which follow. 

In the first instance the domain 0 is restricted to (see Fig. 2a): 

o = (X2'Y2) z [
y > - x2 + 0/2] 

x~ + y~ S (0/2)2 
(16) 

with the constraints (1), (2) and (3) for continuity of shape, slope continuity and 

negative curvature. 
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Figure 2 

160 

(Il) 

Contours of the objective within the feasible region (Fig. 2a). 
Prebuckling shape (Fig. 2b), and bifurcation mode (Fig. 2c) at the 
optimum 

This corresponds to single knuckle tori spheres which have 0 ~ 
riO ~ 0.5 and 0.5 <Rs/D< co where rand Rs are the knuckle and the spherical cap 
radii, respectively. Fig. 2a shows variation of the objective p inside the domain 
(). The opt i rna 1 geometry is prov i ded in Fig. 2b together with the deformed state 
prior to buckl ing. The bifurcation mode corresponding to n = 10 circumferential 
waves is given in Fig. 2c. 

Figure 3 

(a) 

1Yt=500 
~O-336 
Y~(}370 

P = (}993 (24) 

J.J..(J../../. 

./. .... 
'< 

'< 
Y 

5ropo Prio< ...-
to 8utkbng 

(b) 

(e) 

Location of the optimum (3a) together with the optimal shape (Fig. 3a & 
3b) 
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Buckling pressure of the optimal tori sphere is 13.6% higher than that 
corresponding to a hemispherical dome of the same thickness and diameter. 

In the second instance knots were allowed to be placed only outside the 
hemispherical profile (see Fig. 3a). 

Contours of the objective are shown in Fig. 3a. The deformed shape and 
bifurcation mode of the optimal closure are given in Figs. 3b and 3c. 

In both examples the optimum corresponds to the bifurcation mode (m=I). 

4. Multi Knuckle Dome (D/t=500) 

In this paragraph the number of circular segments is increased from 2 to 4 and 
8. Fig. 4a shows initial shape of a closure being made from 4 circles. Unknown 
coordinates of knots 2, 3 and 4 constitute a set of design variables (six in all). 

Figure 4 

Oplimal/ 
Shape 
P.l1J911SI 

N =s 

(0) 

/ 
lnitial.../' 
Shap" 

(e) 

Initial and optimal shape (Fig. 4a). Prebuckling and buckling modes 
(Fig. 4b & c) at the optimum [(0.0,0.5) ; (0.497,0.048); (0.492,0.081); 
(0.320,0.369); (0.0,0.484)]. 

The broken 1 i ne shows a shape once the knot number 3 is moved to a new 

position 3A. The slope at the knot 2 is preserved but, all three remaining segments 

are affected by this local perturbation. The optimal shape is also added in Fig. 
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4a. Its deformed shape is displayed at Fig. 4b and the bifurcation mode with n=15 

circumferential waves is shown at Fig. 4c. The height of the optimal dome is about 

4% 1 ess than that of a hemi sphere. Its buckl i ng pressure however, is 13.9% higher 

than the hemispheres having the same thickness. Details about a a-segmental optimal 

dome are shown in Fig. 5. 

y 
0J.1.,---__ 

OptiMal 
Silapo 
P."'~61101 

Initiol\ n. Shape 
.,.,.v---_-' 

N=9 

Figure 5 Initial and optimal shape together with the corresponding buckling mode 

Table 1 contains maximal buckling pressures as a function of N. It seems that 
maximum buckling pressure is not sensitive to the number of segments. 

N 3 5 9 II 

P 1.136 1.139 1.156 1.159 

Table 1 Buckling pressure vs. number of knots N. 

5. Conclusions 

The optimal meridional shapes of axisymmetric FRP pressure vessel closure are 
found using the non-gradient search method of BOX. Thin domes of constant wall 
thickness are considered under two buckling constraints, i.e. bifurcation and 
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axisymmetric collapse. The final designs are found to be safe in terms of the Tsai

Wu First-Ply-Failure criterion. It is expected however, that for thicker domes the 

First-Ply-Failure mode has to be included into stabil ity constraints in order to 

achieve a feasible solution. Only circular segments are investigated in this paper. 

Other convex segments, like parabolic or cubic, need to be assessed. The 

optimization as well as the analysis method used in this paper are very flexible and 

can easily accommodate such shapes. 

Finally it is worth mentioning that only perfect shells are discussed here 

despite known sensitivity of the buckling pressure to initial imperfections. 
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1. INTRODUCTION. 

The method of derivation of shape sensitivity analysis formula for the 

systems described by boundary integral equations is proposed. The 

boundary element method was used not only to solve the state 

equations, but also to provide sensitivity analysis. The analogous 

formulation of the problem, but treated using the different method, 

was studied in (1). 

2. INTEGRAL EQUATION FOR LAPLACIAN 

Consider the plane domain 0 with the smooth 

boundary r+1 (Fig.1) On the boundary are given 

the mixed conditions for the Laplace equation: 

~w=0 in 0, w=W(s) on " :;; == u = U(s) on r (1) 

We shall apply the boundary equation method 

to this problem. The derivation of boundary 

equations is a well known procedure and can 

r<w=W(S) 
l () "i-

f U' "Rr' 
• ,A n 

~w=O Y fv 
/, "'- at 

/ / , 

, fv 

Figure 1. 

be performed by several methods (See [2,3]). The common procedure for 

Laplace equation is based on the third Green identity and for a smooth 

boundary leads to the following boundary integral equation for mixed 

boundary value problem: 

JW Q 

a 
JUQ PEr 'll: w = In RpQ dr - In RpQdrQ+ P 

iJ n 
Q 

r r 
(2.A) 

+ JWQ 

iJ 

JU Q In R d1Q- In RpQd1Q 
iJ n 

PQ 

1 1 
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Pe, 

(2.6) 

where P denotes an observation point and Q -an arbitrary source point 

on the boundary, RpQ- the distance between points P and Q. The boundary 

equation is written here in two different forms, depending upon on what 

part of the boundary lies the observation point P. This division, not 

commonly provided, is significant for the application of boundary 

equations to problems with a free boundary. 

3. FORMULATION OF SHAPE OPTIMIZATION PROBLEM 

Our aim is to apply the boundary equation method to the following 

shape optimization problem: 

Ifinilllize the area Io of the domain a ( objective functional ) 

I = J dO .. min 
o r a v Iv 

(3) 

while the certain integral functionals Iv defined on the boundary 

values of unkno~1 function u and its normal derivative 

exceed the prescribed constants cv (V=l"M 

Iv = J FV ( w, u ) dr ~ cv 
r 

The general definition of the shape optimization problem 

the dependence of the functions U and W upon the current 

the unknown boundary, i.e. W(s)=W(S" v )' U(s)=U(s,rv )' 

( u=iJw/iJn 

(4 ) 

requires 

location 

4. DOMAIN VARIATIONS, ADJOINT EQUATIONS AND OPTIMALITY CONDITIONS. 

) 

also 

of 

Let the normal variation of the domain be given by the function at(s), 

(s- arc length ). This means, that after the variation the arbitrary 

boundary point P moves in the direction of outer normal on the distance 

at. We shall associate the boundary values of functions with the moving 

point, i.e. wp and up will denote the boundary values of an unknown 

function and its normal derivative before normal variation and 

(w+aw)pand (u+au)p- corresponding values after variation. Note that 

variations of functions U on rv and, respectively, function W on 'v are 

explicitly prescribed by the rule which determines the variations of 

boundary conditions. Variations au on I and aw on r depend 

variations implicitly and should be treated as arbitrary. 

upon shape 

Mentioning 

this, write the equations in variations corresponding the equations (2) 
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J 
a J wQa( 

a 
In R PQ drQ ) -PEr: 'It: awp = aW Q In RpQ drQ + 

a n a n 
r r 

J a(uQ ) J 
a 

d lQ ) In RpQdrQ + a (w -. In RpQ Qa n 

r Iv v 

JauQ In RpQd lQ JuQa (In RpQd IQ) 

I Iv 

J 
a 

J wQa( 

iJ 
P E I 'It: awp = aw In RpQ drQ + In R Q a n a n 

r rv 

J a (UQ In RpQdrQ ) 
J 

a 
d lQ ) + a (w -In R 

QiJ n PQ 

r Iv v 

Jau Q In R pQd 'Q JuQa (In RpQd IQ) 

I Iv 
Equations (S.A)-(S.B) can be obviously written in the form 

L11 aw + L12 au = aMi' LZ1 aw + L22 au = aM z 

where L .. - integral operators, aM. - integrals. 
IJ 1 

(5.A) 

PQ drQ ) -

(5.B) 

Now we prepared enough to derive adjoint equations and sensitivity 

analysis formula. For this purpose introduce Lagrange 

A.v and write the augmented Lagrange functional: 

N 

I = 10 + L A.v ( I -
V 

Cv ) 

V = 1 

The Lagrange multipliers are defined such that 

A. V > 10 if IV = Cv 

A. v = 
"" 

if Iv > Cv 
It is easily show that the variation of I is equal to 

a I 
a F 
J- aw dr + 

a w 
r 

N 

a F 
J-

a u 
au d l + J 

I Iv 

multipliers 

(6) 

(7) 

a F 

a w 

(8) 

a F 
+J-aUd, 

iJ u 
where F = ~ A.V FV • k - boundary curvature. 

V = 1 
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Hultiply (5.A) and (5.B) on the adjoint functions ~(s) and ¢(s) 

respectively, integrate along the corresponding parts of the boundary 

and the result add to the variation of augmented Lagrange functional 

t>I: 

* t>I = t>I + J~(LuOw + L1ZOu - OH1)dj+ J¢(LZ10w + Lzzt>u - OHz)dr (9) 

j r 
Changing the integration order and elimination of variations of the 

functions t>u and t>w leads to the adjoint equations in operator form 

a F a F 
L ¢ + LZ1 ~ = L ¢ + Lzz ~ = 11 a w , 1Z a u 

or, equivalently, in integral equation form: 

PEr (10. A) 

P E j (10.B) 

Remark. Equations (2) and (10) are the equations with weak singularity 

(the kernel in (10.B) is, moreover, of Fredholm type). Changing the 

order of integration in (9) is possible for arbitrary functions from Lp 

on any Liapunov contour r+j [5]. 

The rest terms in the expression (9) give the sensitivity analysis 

formula: 

(11 ) 

dra ]] +J [ ~a wp 

j 

dra)] -J [ ~Q 
j 
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J { 
" F OI = 1 + k Fp + aw -- + 'It: <ppaw p + , P" W 

'v 

-J [ t/>Q u a[ln RpQ drQ]] - J [ <PQ up a [In RpQ drQ]] + p 

r , 
+ J [ t/>Q a [ 

" 
drQ]] +J [ <PQ a[ 

" drQ]]} drp Wp In RpQ Wp ln RpQ 

" n " n 
r , 

The symbols aIr' aI, denote the variations of the objective functional 

due to variation of the parts r v ' 'v of the unknown boundary. The 

variations of the kernels in (11) are calculated using the expressions: 

a( dr )= k at dr, .. .. 
(n,R) "at "at 

{)R = nat, a R=-- at , () n 1= n 2 a n 2 =-n 1 
R " s " s .. .. .. 2 

(n, R) iJ (an,R) at 
[ 1 

(n,R) 

] aln R 
R2 

at a --In R = 
R2 

+ 
R2 

-
R2 

" n 

5. DISCRETIZATION AND NUMERICAL EXAMPLES. 

Equations (2),(10) and (11 ) form the basis of the grad ient numerical 

procedure of shape optimization. On each iteration are solved the 

direct and adjoint problems and with the aid of sensitivity analysis 

formula performs the computation of the new boundary. As the design 

parameters were taken the radius-vectors of the nodal points. The 

discretization procedure for the equations (2) and (10) is common (See 

[2,3J).It is worth while mentioning, that the corresponding matrices 

for discrete analogs of the equations (2) and (10) are transposed. This 

circumstance allows to significantly reduce the computational expenses; 

for example, to solve both direct and adjoint linear equations it is 

enough to provide LU-factorization only once on 

iteration. 

each gradient 

As an example of application of the derived expressions the following 

optimization problem was considered. On the inner and outer boundaries 

of a two-fold domain were given the conditions W(,)=l, W('v)=0 (Fig.2). 

The Lp-norm [4J of the normal derivative on the outer boundary was 

minimized. Due to the symmetry only a quarter of the domain was 

studied, and on the axes of symmetry were given the conditions u=0. The 

boundary was divided in 24 straight segments, and the linear 

interpolation was assumed. The program was written in Turbo-Pascal. 
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For the typical example each 

gradient iteration required 

62 sec for 4.77 MHz XT with-

out coprocessor, and about 4 

sec for 16 MHz NEAT with 

coprocessor. Total optimiza

tion time was equal 324 sec 

and 46 sec respectively. Four 
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-six gradient iterations was required to satisfy the optimality 

cond i t ions with the prec is ion 10-3 . Resu 1 ts are shown on Fig. 3-5. On 

the left pictures the initial, and on the right - the final shapes are 

drawn. The height of the rectangles along the free boundary is 

proportional to the value of the gradient of functional F at the 

corresponding node. Radius-vector on each iteration changes 

proportionally to the deviation of the gradient from its mean value. 

6. CONCLUSIONS. 

The numerical algorithm based on simultaneous solution of direct and 

adjoint integral equations and sensitivity analysis formula was 

developed. The algorithm was tested on the solution of 2-dimensional 

mixed boundary value problem for Laplace equation. The proposed method 

of derivation of gradient formulas is easily extended to 3-dimensional 

and vector problems. 

This study was performed at the Institute for Mechanics and Control 

Engineering (University Siegen, FRG) and supported by Humboldt 

Foundation. 
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3D-SHAPE OPTIMIZATION: DIFFERENT WAYS TO AN OPTIMIZED DESIGN 

Abstract 

L.Harzheim and C.Mattheck 

Nuclear Research Center Karlsruhe GmbH 

Institute for Material and Solid State Research IV 

Postfach 3640 

7500 Karlsruhe, West Germany 

Shape optimization by the CAD-method (CAD: Computer Aided Dptimization) [1J which 

is based on a computer simulation of biological growth, is a simple and effective tool in 

order to obtain optimized 2D- and 3D-components with homogenized surface stresses. 

Copying the growth of the trees the design proposal of the component to be optimized is 

coated with a thin layer which is allowed to grow according to an empirical volumetric 

swelling law to reach the desired homogeneous stress state. Nevertheless, it is not nec

essary to coat the whole surface with the layer, but it is also possible to let only parts of 

the surface grow. As a representative example of a 3D-component, the start proposal of a 

kinked bending bar is optimized in different ways by letting different parts of the surface 

grow. The different optimized shapes are of similar quality according to the homogeneity 

of the stress state, but they exhibit substantial differences in their shapes. In practice, this 

is of great advantage because you can select the design which is most easily manufac

tured or take into account design limitations with respect to the dimensions. Conse

quently, the variety offered by the CAD-method opens up the possibility of constructing 

components which comply with the restrictions in an effective way. The paper furthermore 

shows the influence of the history of optimization with respect to the ready-optimized 

shape 

1. Introduction 

The CAD-method which was presented in [1J is a powerful tool for optimizing engineering 

components. However, to utilize fully the advantages of this method and to get the most 

suitable optimized design some practice in handling the CAD-method is required. This is 

due to the fact that the optimized design is not unequivocally determined but depends on 

the path chosen to optimize the design. This property opens up the possibility for an 

experienced user to get an optimized design which fulfils the restrictions one needs or 
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components which can be most easily manufactured. Therefore - as an example - a kinked 

bar loaded by bending is optimized in three different ways to show the different optimized 

shapes resulting from the different paths. This will give the reader a feeling of what hap

pens by using different optimization histories and will enable him to generate the best 

suited design for his requirements. 

The kinked bar to be optimized together with the boundary conditions are shown in fig. 1. 

The bar has a constant width with the curves in the knees designed as circles. In addition, 

the Mises stress along the right border is shown in the figure. It is visible that the upper 

and lower straight parts of the bar act only as a simple bending bar with a constant max

imum bending stress (Jappl • To be independent of the special value of the acting moment 

the Mises stress shown in the figure is normalized to (Japp/ • In the region of the knee the 

convex part is underloaded whereas in the concave part a notch stress appears. 

The goal is to optimize the kinked bar with respect to the following two points: 

1. The stress along the left and the right borders should be homogenized. 

2. The stress along the left and the right borders should be diminished by a factor of 

nearly 1/3 relative to (J app/ • 

In applying the CAD-method it is possible to let grow three surfaces F1 and the opposite 

surface F2 and the upper surface F3 (see fig. 1). In this publication we will say "in-plane" 

growth if only F1 and F2 will be allowed to grow and "out-of-plane" growth if only F3 will 

be allowed to grow. In the following chapter we will explain three different paths of opti

mization: 

1. In the first step only "in-plane" growth and in the second step only "out-of-plane" 

growth are allowed. 

2. In the first step only "out-of-plane" growth and in the second step only "in-plane" 

growth are allowed. 

3. Both "in-plane" and "out-of-plane" growths are allowed simultaneously in the same 

step. 

For the calculation a Young's modulus E=210000 N/mm2 and a Poisson ratio v = 0.3 

were chosen as material constants. The calculations were done using the FEM code 

ABAQUS [2J with HE8 elements. 
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2. Three Optimization Paths for the Kinked Bar 

In this chapter the results of the three optimization paths will be presented. The shapes 

of the initial, the intermediate and the final designs will be shown with the corresponding 

stress distribution along the right-hand border. In some cases, the cross-sections of the 

upper straight part and the upper knee are shown to demonstrate the variation in the 

shape of the design. The corresponding cuts through the lower straight part and the lower 

knee lead to the same but mirrored cross-sections and are not shown for that reason. For 

all optimization paths both growth as shrinkage were allowed. 

2.1 First Optimization Path 

The chosen order of optimization steps in this path and the resulting designs are shown 

in fig. 2. In the first step only "in-plane" growth was allowed and u~~I/U'PPf = 1.0 was cho

sen. This means that only homogenization of the stress occurs but not reduction. This 

leads to a shrinkage of the convex parts of the knees due to underloading there and to a 

growth of the concave parts due to the notch stresses acting. The result is the design 2 

shown in fig. 2. The cross-section is not changed in this first step and it is rectangular like 

in the starting design. To save computer time this optimization step was calculated in a 

2D-model. 

In the second step only "out-of-plane" growth was allowed and u}~I/u,pPI = 113 was cho

sen. This leads to an increasing growth from the center line to the borders reflecting the 

bending stresses in the bar. The resulting design 3 is shown in fig. 2 with the cross-section 

of the upper straight part and the region of the knee, respectively. The cross-section in the 

upper straight part is symmetric, whereas the cross-section in the region of the knee is 

enhanced towards the left side. This asymmetry arises from the fact that the stress has 

not been fully homogenized in the first step. The remaining higher stress in the concave 

part leads to slightly stronger growth than in the convex part where the stress is slightly 

less than 1. Nevertheless, in a good approximation, one has an optimized shape with a 

constant cross-section which can be manufactured easily. 
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2.2 Second Optimization Path 

The order of the second path and the corresponding results are shown in fig. 3. Here in 

the first step only "out-of-plane" growth was allowed and a reference stress uW/uapp/ = 1/3 

was chosen. This leads to a design with the Mises stress homogenized and reduced in just 

one step. Nevertheless, it is not possible to get a fully homogenized stress distribution in 

the first step because of the circular shapes in the concave parts of the bar which will not 

change by "out-ol-plane" growth. Consequently, the stress is reduced but a notch stress 

still remains which, however, is reduced. The cross-section of the upper straight part of 

design 2 after step one is symmetric with decreasing thickness from the center to the 

borders reflecting the bending stresses. In contrast to the above the cross-section in the 

region of the knee shows a larger thickness at the concave side where the notch stresses 

appeared and a reduced thickness at the convex side which had been underloaded. 

In the second step only "in-plane" growth was allowed with the same reference stress like 

in step one. This leads to a design for which the upper and the lower straight parts of the 

bar remain unchanged, whereas the concave parts of the knees grow and the convex parts 

shrink. The result is the design 3 with a homogenized stress distribution. Here the differ

ence between the thickness of the two borders in the region 01 the knee is reduced by 

"in-plane" growth. However, the design is difficult to manufacture compared to the opti

mized design in the previous section. 

2.3 Third Optimization Path 

This optimization path needs only one step because "in-plane" and "out-ot-plane" growths 

take place simultaneously with the desired maximum bending stress used as reference 

stress. This leads to an increase in the width and - in contrast to the sharp edges 

appearing in the optimized designs of the first and the second optimization paths - to a 

rounded cross-section (fig. 4). The cross-section of the optimized bar is not the same along 

the bar. It is symmetric in the straight parts of the bar, whereas the cross-section in the 

region of the knees is asymmetric. The thickness at the concave part is higher than at the 

convex side as a result of the notch stresses and the underloading part of the bar, 

respectively. It is interesting that similar cross-sections can be seen in nature. The photo 

shows a saw cut through a lateral root of a spruce tree indicating the high degree of shape 

optimization in nature. (The photo was kindly handed over to us by Dr. Wood, Oxford.) 
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Summarizing it turns out that the different optimization paths lead to very different shapes 

but of comparable fatigue resistances. The formation of the different shapes can be 

understood from the histories of the optimization procedures and enables the CAO-user 

to choose the most suitable optimization strategy to get that optimized design which 

complies best with the design restrictions. 

3. Summary 

By a specific example of three optimization paths the use and the resulting effects are 

demonstrated to show the reader the freedom he has in optimizing a design. The shapes 

of the three resulting optimized designs show substantial differences but they exhibit the 

same quality regarding stress distribution. This variety of the CAO-method offers the 

possibility of constructing the best suited design under a functional or manufacturing point 

of view. 

It should be mentioned here that the three paths shown in this publication are not the only 

possibilities. For example, in the first optimization path one can choose uiMuapp! = 1/3 for 

the first step instead of Ure,/Clapp! = 1. In this case one optimizes the design in one step and 

a second step is not necessary. The optimized shape in this example would have a rec

tangular cross-section and the shape of the left and the right borders would be the same 

as in the design 2 in fig. 2. But the width would be increased to reach the desired 

Clre,/Clapp! = 1/3. It is left to the reader to think about other possibilities and to imagine 

roughly how the optimized design would look like. 
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Fig. 1: FEM-model of the kinked bar to be optimized with the boundary conditions and the 
stress distribution along the right border. The surfaces which may grow are marked 

in addition 

M 

CD 

Fig. 2: The initial, the intermediate and the final designs resulting from the first optimization 
path with the corresponding stress distribution along the right border. (Optimization 
history : First growth "in-plane", second growth "out-ot-plane") 
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Fig. 3: The initial, the intermediate and the final designs resulting from the second optimiza

tion path with the corresponding stress distribution along the right border. (Optimiza
tion history: First growth "out-ot-plane", second growth "in-plane") 
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Fig. 4: The initial and the final designs resulting from the third optimization path with the 
corresponding stress distribution along the right border. (Optimization history: 
Simultaneous growth "in-plane" and "out-ot-plane"). The photo shows a saw cut 
through a root of a spruce showing a Similar cross-section. 
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MULTIPARAMETER DESIGN OPTIMISATION IN RESPECT OF STRESS CONCENTRATIONS 
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Abstract: The dependence of stress concentrations (structural stress, 
notch stress and crack stress intensity) on the dimension ratios in the 
structure under review, can be presented within delineated dimension 
areas as a simple approximation formula. The dimension ratios occur 
multiplicatively in this formula, with initially unknown exponents 
(smaller than one). The exponents can be determined from a small number 
of supporting point values of the stress concentration. They indicate 
to the designer the dimension ratios to which the stress concentration 
reacts particularly "sensitively", the direction in which this occurs 
and how large the possible reduction is. On the other hand, it becomes 
clear which dimension ratios have no or little influence on the stress 
concentration. The designer is thus provided with a valuable aid for 
structural optimisation. The method is demonstrated by way of example 
for the notch stress concentrations of welded cruciform joints. 

1 Introduction 

The method presented below for multiparameter structural optimisation 
in respect of stress concentrations is based on the following basic 
idea. The elastic stress concentration factors K can be represented 
within sufficiently narrowly defined parameter areas by a simple 
formula in which the (v = 1,2, ... ,n) mutually independent dimension 
ratios AV of the problem under review (it is the ratios that matter and 
not the dimensions themselves) are given different exponents nv ' 

multiplied with each other, and combined with a coefficient k placed in 
front of the product [1, 2]: 

( 1 ) 

In a log-log plotting of the two-parameter dependence of the notch 
stress concentration factor Kt for instance, what then appears is a 
rhombic-shaped field of straight and parallel intersecting lines, 
Fig. 1 (two rhombic-shaped fields are shown one above the other here). 

If this simplified representation is sufficiently accurate (verified in 
[1] for numerous notch cases), it should suffice for determining the 
entire line field from a mlnlmum number of actually calculated 
dimension combinations (n+1 combinations are sufficient). This offers a 
considerable saving in terms of computing effort. Especially when 
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Fig. 1: Notch stress concentration factor Kt 
for rectangular opening in tension plate as a 
function of dimension ratios alb and rIb; re
sults of balancing calculation in two rhom
bic-shaped fields; logarithmically I inearised 
approxi/ffiation formula; after Radaj [1). 

dealing with problems with more than two dimension ratios, the number 

of dimension combinations which requires to be analysed quickly becomes 

exceedingly large even if a narrow area of ratios is to be covered 

uniformly (i. e. not only with the minimum number of ratios). 

The simplified formula in equation (1) provides a further advantage in 

that it is possible to immediately detect the direction in which the 
various parameters influence the stress concentration factor (positive 
or negative exponent), and to what extent this occurs (small or large 

exponent). In other words, it is immediately recognised to which 

dimension ratios the stress concentration reacts particularly 

"sensitively" and by which ratios it is more or less unaffected. 

The simplified formula may relate to the concentration of structural 

stress, notch stress or the crack stress intensity. Formulae of this 

kind are known for the structural stress concentration at welded tube 

joints [3] and included in design specifications. Corresponding 

formulae apply to the notch stress concentration, for instance, at 
openings and inclusions [4) or at concave fillets of crankshafts [5). 

In fracture mechanics, such formulae are remotely comparable in which a 

stress intensity factor determined for an infinite plate or solid is 

combined with correction factors in which the finite-dimension ratios 

occur. Preference can be given quite generally to the multiplicative 

form over the corresponding additive form [1). This does not rule out 

most accurate results occasionally being obtained in individual cases 

with mixed forms. 
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2 Approximation formula for tensile plate with rectangular opening 

The simpl ified formula for the two-parameter dependence of the notch 
stress concentration in the plate with rectangular opening and 
rectangular core (rectangles with rounded corners) has been examined in 
detail for 7 load cases each. The balancing calculation based on the 
least-squares fit was performed in the area under review (corresponding 
to one of the two curve fields in Fig. 1) for 16 available initial 
values each, i. e. significantly more than the three required as a 
minimum. This does not mean, though, that the approximation formula was 
significantly improved by the large number of initial values. On the 
one hand, the initial values exist with only limited accuracy, on the 
other hand, the actual curve pattern may deviate greatly from the 
simple approximation. 

For comparison purposes, the curve field in question is now fixed with 
a small number of initial or supporting values. According to equation 
(1), three supporting points suffice for the two-parameter dependence 
in order to determine the quantities k, n1 and n2 definitely without a 
balancing calculation. As the approximation can be improved by 
including a small number of additional supporting points in combination 
with a balancing calculation, this latter procedure is adopted. 

The question which then remains is how to best select the distribution 
of the supporting points. Closely adjoining supporting pOints in the 
middle of the area worsen the approximation in the more distant area 
because the limited accuracy of the initial values has a more 
intensified effect there and because the non-linearity of the actual 
curve pattern is not balanced in that area. The argument referring to 
the intensification of the inaccuracy does not apply to the choice of 
supporting pOints exclusively at the outer edge of the area although 
the argument relating to the unbalanced non-linearity remains valid. A 
further point to consider is that the initial values at the outer edge 
are generally less accurate than in the middle of the area as a 
consequence of the more extreme dimension ratios. 

What has been stated above is confirmed by the balancing calculations 
performed for the stress concentration factors of the rectangular 
opening in the tension plate. The supporting points were varied as 
shown in Fig. 2 (the rhombic-shaped field is replaced by a square 
field). The mean and maximum deviation of the initial values from the 
balanced values related to the balanced values, 8 m and 8 max ' are 
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i) j) k) 

Fig. 2: Variation of number and position of supporting points for balancing 
calculation; rhombic-shaped field replaced by square field. 

Table 1: Accuracy of results after balancing calculation; notch stress concentration 
factor for rectangular openi~ in tn~sion plate; small corner rounding radii (upper 
field in Fig. 1); Kt = k(r/b) (a/b) . 

Supporting points (Fig. 2) Parameters in eq.(l) Deviation 
Position Number k n, n2 8 8 max m 

a 16 1.988 -0.376 -0.098 0.025 0.051 
b 12 2.036 -0.371 -0.099 0.026 0.063 
c 8 2.098 -0.362 -0.097 0.026 0.055 
d 8 2.106 -0.364 -0.108 0.029 0.059 
e 8 1.929 -0.386 -0.094 0.026 0.051 
f 8 2.048 -0.366 -0.101 0.024 0.052 
g 4 1.633 -0.425 -0.080 0.037 0.098 
h 4 2.179 -0.355 -0.105 0.033 0.083 
i 4 2.150 -0.358 -0.127 0.032 0.084 
j 4 2.050 -0.364 -0.089 0.024 0.075 
k 4 1.911 -0.388 -0.105 0.028 0.078 
1 4 1.948 -0.383 -0.084 0.028 0.054 

presented in Table together with the quantities k, n 1 and n2 . The 
results with only 4 supporting points approximately at the middle of 
the edges of the field represent the optimum. They are equivalent to 
those with all 16 supporting points. The corresponding investigation 
for a 5 x 5 field reveals the combination of the edge points mentioned 
with the centre point of the field to be the optimum choice. 

3 Approximation formula for welded cruciform joint 

The procedure described, verif ied for the two-parameter notch stress 
problem of the tension plate with rectangular opening is now applied to 
a multiparameter problem, namely to the contour model of a welded 
cruciform joint with fillet welds. The characteristic dimensions of 
this model are the tenSile plate thickness t

" 
the transverse plate 
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Fig. 3: Dimension parameters of investigated 
cruci form joint contour model; variation of 
the dimension ratios a/t1, t2/t1, sIt" f1/t1 
and f2/t1' 

thickness, t 2 , the throat 

of curvature, P1 and P2' 
Fig. 3. The (fictitious) 

thickness, a, the slit length, s, the radii 

at the fillet transition and weld root, 

rounding of the fillet transition and weld 

root corresponds to Neuber's approach for the microsupporting effect at 

the sharp notch root when subjected to fatigue loading [6, 7]. The 
mutually independent dimension ratios have to be introduced into the 

approximation formula, equation ('). The ratios selected are the plate 

thickness ratio, t 2/t 1 , the weld throat thickness ratio, a/t 1 , the slit 

length ratio, slt 1, and the radius ratios, P1lt1 and P2/t1' As the 
dimension ratios should be independent of each other, the throat 

thickness, a, should be measured from the ideal weld root point, 

irrespective of the slit length, s. As the notch stress maximum is de

pendent only on the curvature radius of the notch in question, not on 

that of the more distant notches, the influence of P2/t, is ignored in 
the equation for Kt , and that of p,lt 1 likewise in the equation for 

Kt2 . The two approximation equations then read: 

_ I a )n,( t2 )n2( S )n3( Pl )n4 Kl-1<l - - - -
t \ tl tl tl tl 

(2 ) 

( 3 ) 

In other words, these are two four-parameter notch stress problems. To 

determine the 5 unknown quanti ties in each of the above equations, 9 

supporting points were selected in each case, 4 more than required as a 

minimum: the basic model with a/t 1 = 1, t2lt1 = " s/t1 = 1, P1/t1 = 
0.1, P2/t1 = 0.1 and 8 further models, each with a variation of only 
one dimension ratio with the other ratios remaInIng unchanged, in 

concrete terms a/t 1 = 0.25 and 4.0, t2/t1 = 0.25 and 4.0, s/t 1 = 0.5 

and 1.5, P1/t, = 0.25 and 0.5, P2/tZ = 0.05 and 0.2. The result of the 
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Fig. 4: Notch stress analysis using boundary 
element method for symmetry quarter of cross 
tension joint model under tensile load 
(right-hand edge); reaction forces (left-hand 
and bottom edge); boundary stress distribu
tion plotted to the inside. 

Table 2: Notch stress concentration factors of fillet transition (K ) and of weld 
root (KtZ ) of cross joint contour model for 9 dimension variants (sup~Jrting points) 

Model Dimension ratios Stress concentration 
No. a/t1 t Z/t1 s/t1 Pl /t l P z/t1 Ktl Kt2 

1 1.0 1.0 1.0 0.1 0.1 2.67 2.80 
Z 1.0 1.0 1.0 0.Z5 0.05 1.99 3.66 
3 1.0 1.0 1.0 0.5 0.2 1.59 2.19 
4 1.0 1.0 0.5 0.1 0.1 Z.54 2.11 
5 1.0 1.0 1.5 0.1 0.1 2.82 3.49 
6 4.0 1.0 1.0 0.1 0.1 2.41 0.88 
7 1.0 4.0 1.0 0.1 0.1 2.65 2.59 
8 0.25 1.0 1.0 0.1 0.1 5.71 6.46 
9 1.0 0.25 1.0 0.1 0.1 2.68 2.95 

balancing calculation is considered to be approximatively valid even if 

all the dimension ratios are varied simultaneously provided the 
following region is not exceeded: 0.2 ~ a/t 1 ~ 5.0, 0.2 ~ t2/tl ~ 5.0, 

0.3 ~ s/t 1 ~ 1.6, 0.08 ~ Pl/tl ~ 0.6 and 0.04 ~ P2/t1 ~ 0.25. Moreover, 

P1/a and P2/a are limited similar to P1/t1 and P2/t1' 

The initial values Kt at the 9 supporting points were calculated using 
the boundary element method, Fig. 4 (a symmetry quarter of the contour 
model is sufficient). The parameters evaluated were the notch stress 

concentration at the fillet transition for Kt1 and the same at the end 
of the slit for Kt2 , Table 2. The result of the balancing calculation 
reads: 

( 4 ) 

( 5 ) 
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Fig. 5: Notch stress concentration factors (K and K 2) for the cr:u~iform joint 
model according to equations (4) and (5) with s}t, = ,.~ fillet transition (on top) 
and weld root (at bottom). 

The stress concentration factor Kt , increases with t, /a and t, / P" and 
weaker with sit" whereas the influence of t 2/t, is negligible. The 
stress concentration factor Kt2 increases in a similar way with t,/a, 
t,1 P2 and sit,. The result of the calculation is displayed as a graph 
in Fig. 5 for sit, '.0. 

Mean and maximum deviation of the initial values from the balanced 
values related to the balanced values, are in the case of equation (4), 

~ = 0.'04 and Amax = -0.207, in the case of equation (5), Am = 0.060 
and ~ax = 0.'4'. The approximation is thus not so good in the first 
case as in the second one. 

Random-sample comparison calculations with dimension ratios within the 
stated ranges, reveal deviations less than A . The deviations become m 
significantly larger when exceeding the range limits, for instance for 

sit, = 0.2 and 2.0 (the former with P2/t, = 0.2 corresponding to a 
circular hole without a slit); they were close to the stated Amax 
values. 

A sign of the high stability of the balancing calculation is the fact 
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that both when the term with t2/tl is removed from the above equations 
and also when the term with P2/tl is added to equation (2) or the term 
with Pl/tl to equation (3), largely identical n,,' m" and k values were 
determined with the remaining terms. 

The stress concentration factors calculated with the boundary element 
method for the basic model, Ktl = 2.67 and Kt2 = 2.80, were compared 
with data from Radaj [6, 7] (in [6] Fig. 161b for alb = 1.0), which had 
been determined using the same method. The correspondence within the 
I imi ts of the possible read-off and extrapolation accuracy is rather 
good. The values of Ktl = 4.05 and Kt2 = 5.73, determinable according 
to Rainer [8] for the cruciform joint under consideration (complex 
approximation formulae based on finite element calculations with the 
addition of the solution for the shoulder bar according to Neuber) are, 
by contrast, too high. The simpler approximation formulae of Vung and 
Lawrence [9] lead to the acceptable values Ktl = 2.33 and Kt2 = 3.16, 
the formula of Turmov [10], on the other hand, to the value Ktl = 1.48 
which is too small. What is remarkable with the approximation formulae 
according to [9, 10] is that they are based on the simple Jt/p depend
ence of the stress concentration factor, however in the form of the 
"one-pIus-formula" discussed in [1] and not found to be better. The 
above mentioned dependence with the square root is not confirmed by the 
equations (4) and (5), for which there are plausible arguments. 

4 Concluding remarks on the optimisation task 

The task of structural optimisation which is set to the designer is 
effectively supported by the simple approximation formula presented for 
stress concentration. First of all, it is necessary to specify which 
dimension ratios mainly determine the respective stress concentration. 
Only they are included in the approximation formula. Their initially 
unknown exponents are then determined on the basis of a small number of 
variation calculations. As soon as this has been done, it is possible 
to ascertain without any further variant or optimisation calculations, 
(i. e. without the need to call in an analysis engineer), what effects 
possible design measures have and to which dimension ratios the stress 
concentration factor reacts particularly "sensitively". For instance, 
it was in no way predictable in the case of the cruciform joint that 
the ratio t2/t1 has no effect and that the influence of the ratio a/tl 
is particularly pronounced. It is once again stressed that the 
approximation approach elucidated above appl ies equally well to notch 
stress concentration, structural stress concentration and crack stress 
intenSity. 
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Abstract: The semi-analytical method of sensitivity analysis [1-3] of finite element discretized structures 
is indispensable in a computer aided engineering environment for interactive design and optimization. 
However, it has been shown [3-10] that the method may exhibit serious inaccuracies when applied to 
structures modelcd by beam, plate, shell, and Hermite elements. 

The inaccuracy of primary concern is associated with the dependence of design sensitivity error on 
finite element mesh refinement [3-10], but also errors subject to the pertubation of design variables may 
manifest themselves. Truncation errors due to conditioning of algebra and limited computer precision will 
not be eonsidered here. 

In this paper we present a new method developed in [10] for elimination of inaccuracy in semi
analytical sensitivity analysis for a class of problems. The method is advantageous from the point of view 
that problem dependent, exact error analysis is not required, and that it both eliminates the dependence 
of the error of the sensitivity on finite element mesh refinement and on design variable pertubation. Also, 
the method is computationally inexpensive because the differentation of the stiffness components can be 
exclucivcly carried out via a forward difference scheme, provided that a set of simple correction factors 
has been computed. The correction factors may be detcrmined once and for all for a given type of finite 
clement, or as an initial step of the procedure. 

1. INTRODUCfION 

Among the different methods available for sensitivity analysis of a finite element discrctized structure, 
i.e., the overall finite difference technique, the analytical technique, and the semi-analytical technique [1-
4], the latter is preferable for a broad class of problems. 

The method is based on the global eqUilibrium equations for a finite element discretized problem 

IS] IV} = iF} , (1) 

where {F} is the vector of external loading, IS] the stiffness matrix, and {D} the resulting displacement 
vector. In a design problem, IS] and {D} depend on a vector {a} of design variables aj' j = 1, .. ,J. We 
shall assume that the external loads are independent of design so that a{F}Jaaj = {O}, j = 1, .. ,J. 

The primary goal of design sensitivity analysis is to determine the sensitivitIes a{D}Jaaj of the nodal 
displacements with respect to design. To this end, (1) is differentiated with respect to aj' J = 1, .. ,1, and 
with design independent external loads, we obtain 

where 

[S({a})] aiD} = {fit 
aa. J 

(P}. = 
J 

J 

a[S(Ia})] {D} 
aaf 

j = 1, .. , J , 
(2) 

j 1, .. , J , (3) 

is the so-called pseudo load vector associated with the design variable a·. 
The sensitivities a{D}Jaaj can now be solved from (2) using the sake factorization of the global 

stiffness matrix [S] as is employed in the initial solution of the finite element equilibrium equations (1) 
for the nodal displacements {D} in a given step of redesign. 
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With {D} obta~ned from (1), the determination of d{D}/daj from (2) only requires knowledge of the 
pseudo loads {Fli from (3), where the design sensitivities d[S]/daj of the stiffness matrix must be 
available. If the latter sensitivities are determined analytically, the above approach is called the method 
of Analytical sensitivity analysis, and if they are determined by numerical differentation, the term Semi
analytical sensitivity analysis is used. 

In the recent papers [3-10] it has been demonstrated that the method of semi-analytical sensitivity 
analysis may suffer serious accuracy drawbacks when applied to finite element discretizcd structures 
modeled by beam, plate, and Hermite elements. Thus, in the papers [8,10], error analyses were carried 
out for a model problem of a finite element discretized beam, whose length was taken as a design 
variable, Le., a simplified type of shape optimization problem was studied. Along with the expected and 
acceptable feature that the sensitivity error is proportional to the relative pertubation of the design 
variable, it was also found in [8,10] that, unfortunately, the sensitivity error is at the same time 
proportional to the square of the number of finite clements used to model the beam. 

The source of the latter severe inaccuracy problem was found to be two-fold in [10]. Firstly, the 
components of the stiffness matrix of the finite clement used, depend on the design variable in three 
different powers because the element both possesses translational and rotational degrees of freedom. 
Secondly, given this fact, the order of approximation behind a standard forward finite difference scheme 
(or, for that matter, a central finite difference scheme) for numerical differentiation of the stiffness 
components, is insufficient to make associated stiffness errors equal (preferably to zero), which was found 
to be a requirement for elimination of error dependence on mesh refinement in [10]. 

We shall now consider a method [10] for an extended class of problems, that docs not only eliminate 
the accuracy problem pertaining to the number of finite elements used in the discretization, but also 
removes the error subject to the pertubation of design variables. 

2. ClASS OF PROBLEMS AND METHOD OF ERROR ELIMINATION 

Suppose that a global or local finite element stiffness matrix S( {a}) is to be differentiated numerically 
with respect to a design variable aj' j = 1, .. , J, and assume that the typical ardependent stiffness 
components sr' r = 1, .. , .R, contain aj in different negative integer powers and have the form 

s,(l) = P, + q,l-' r = 1 , .. ,R, (4) 

where I = aj' and R ~ 1. Eq. (4) implies that I will typically be a charactcristic element length or 
dimension in thc plane of the finite element. The terms Pr and coefficients qr' r = 1, .. , R, depend, in 
general, on the remaining design variables, i.e., 

P, = p,(al"" aj_1' aj+I"" a), q, = q,(al'''' aj-I' aj+I'''' aJ), r = 1,,,,R . (5) 

If sr' r = 1, .. , R, have the form (4), we introduce a substitution of variable such that aj is represented 
by the reciprocal variable z, 

z = I-I , (6) 

whereby (4) can be written in the form s:(z) = P, + q, z' , r = J, .. R, such that we have s:(z) = S:(I-I) 
= s,(l) = S,(Z-I). As is obvious from the latter relationships, the introduction of a· = z rather than a· = I 
as a design variable presents no barring for practical application, and can be easdy implemented. Ilt us 
refrain from applying asterisks as indicators of stiffness components given as functions of z, and just write 

s,(z) = P, + q,z' r = 1,00, R . (7) 

We shall now assume that the numerical differentiation with respect to z of a given stiffness component 
sr given by (7) is performed by means of a standard finite difference operator dz (m), where m designates 
the order of the polynominal aRproximation of sr(z) that constitutes the basis for computation of the finite 
difference approximation dz(m)sr to the exact first derivative dS!dZ. 

For, e.g., first through fourth order approximation of sr' we have the following well-known formulas 
for computation of the first derivative: 
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ills As, 1 (Sa) (m 1) 
z ' llz 

llz [s,(z + llz) - s,(z)] 

(m = 2) iZ)s 
z ' 

= _1_ [s(z+llz) - s(z-llz)] 
2llz ' r 

(8b) 

(m = 3) i 3ls 
z r 

= _1_ [-s(z+2llz) + 6s(z+llz)- 3s(z) - 2s(z-llz)] 6llz r r r r 
(8c) 

i 4ls 
1 (8d) (m = 4) 

z r = 12llz [-sr(z+2llz) + &r(z+llz)-&r(z-llz) + sr(z-2llz)] 

The fact that the computational cost increases with the number of incremented values of z at which the 
stiffness components sr have to be evaluated, must naturally be taken into account in the computational 
procedure. 

Let us denote by Tlz the relative increment (pertubation) of the dcsign variable z, i.e., 

TI = llz . (9) 
Z z 

For a given order m of approximation, we now express the finite difference approximations dz (m)sr 
in terms of the exact first derivatives iJs/iJz and the relative error factors a/m): 

d(m) _ iJs r (1 (m» 
S - - + a , r =1, .. , R . 

z r iJz r 
(10) 

It is easily verified that, due to the form of Eqs. (7), (8) and (10), the relative error factors a/m) will 
be independent of the actual value of the design variable z. Thus, if a particular a/m) is non -vanishing, 
it will only depend on the relative pertubation 'l1z as defined by (9). 

The crucial point is that when written in the form of (7), the stiffness components sr' r = 1, .. , R, depend 
on the design variable aj = z in non-negative integer powers r = 1, .. , R. This implies that numerical 
differentiation of these stiffness components by means of a formula from among Eqs. (8), all of which are 
based on standard polynomial approximations, will furnish exact derivatives of all the stiffnesses sr' r = 
1, .. , R, provided that the order m of the polynomial approximation behind the applied formula is equal 
to or larger than R, i.e., m :.: R. 

Similar advantage is not achieved if the stiffness components sr are considered functions of a design 
variable appearing in negative powers as in (4), because such a form of the stiffness components cannot 
be represented exactly by any standard polynomium of the design variable in question. 

Thus, only when using aj = z as a design variable, can we make the finite difference based first 
derivatives coincide with the exact first derivatives of the stiffness components. This requires that we take 
m :.: R, and can be expressed as 

(m) iJs, 
d s = - = 

z r iJz 
(m) 

a = 0, r = 1, .. , R, if m :.: R . , (11) 

The fact that the relative error factors a/m) of the derivatives of the ardependent stiffnesses sr' r = 
I, .. , R, become equal for m :.: R, implies that the contribution from the design variable a· = z to the 
sensitivity error associated with finite element mesh refinement is eliminated if we take m :.: II.. Moreover, 
the vanishing of the error factors associated with m :.: R implies that they have become independent of 
the value of the relative pertubation Tlz of the design variable aj = z. This means that also the numerically 
computed derivatives of the stiffness components become independent of'l1z if m :.: R. From this we may 
eonclude that even the contribution to the sensitivity error from the pertubation of the design variable 
aj = z is eliminated if we take m ~ R. 

We shall now implement the above results in an efficient computational procedure of low cost. This 
means that use of higher order formulas in (8) is to be limited as much as possible, because, as we have 
already discussed, the computational cost increases with m. 
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Write now (11) for the smallest order m of approximation which yields the exact derivatives aslaz of 
all the z-dependent stiffness derivatives, i.e., m = R: 

(R) as, 
d s = - r = 1, .. , R . 
z' az' 

(12) 

Since the derivative at the right hand side is independent of llz (but depends on z), the same holds true 
for the derivative at the left hand side. 

Next, consider (10) in the case of first order approximation, m = 1, where dz (l)sr is the simple first 
order derivative lls/Az, cf. (8a), so that we may write 

lls as 1 
c,~ a: c, - ---

1+ a(l) 

r = 1, .. ,R , 
(13) 

, 

where the dimensionless factors cr' r = 1, .. , R, will be termed correction factors in the sequel. The 
correction factors cr must follow the error factors ap) in bcing independent of the actual value of the 
design variable z and only dependent on the value of the relative increment llz = llz/z. It is characteristic, 
though, that we will always have c1 = 1, cf. (13) with r = 1, since the first ordcr formula (8a) yields the 
exact result for the linear stiffness component sl. 

Obtain now the following expression for the correction factors cr by combination of (12) and (13): 

iR)s 
z ' 

1 ; , r = 2, .. , R. (14) 

llz 

Define then the corrected first derivatives of the stiffness components (llslllz)cOIT' r = 1, .. ,R, 
as 

(IlSr) = c 11S, , r = 1, .. , R. 
L\z corr 'L\z 

(15) 

It is the primary objective of the new computational procedure to determine these corrected derivatives, 
and we see by means of (13) that they correspond to the exact derivatives, 

( L\S,) = as, ,r = 1, .. , R. (16) 
L\z az corr 

Let us now set up the computational procedure pertaining to a given design variable aj = z: 

(0) Choose an appropriate value of the relative increment llz = llz/z to be used throughout. 

(I) As an initial step, determine for all subsequent computations, the correction factors cr' r :: 1, .. , 
R, by means of Eq. (14) with the denominator given by (8a) and the numerator given by (8b) 
if R :: 2, (8c) if R = 3, etc. The values of sr to be used arc obtained from (7) on the basis of an 
arbitrarily chosen value of z and the above value of llz' which furnishes Az = llzZ. 

(II) In all subsequent computations where it is required to determine the derivatives of the stiffness 
components subject to a specified value of the design variable z, apply Eq. (15) with the values 
of cr' r = 1, .. , R, obtained in step (I). The determination of /\s/Az, r :: 1, .. , R, on the right hand 
side of (15) implies a simple, first order forward difference approach based on formula (8a), and 
approximate derivatives arc then corrected by means of the factors cr such that we obtain 
(L\slL\z>Cocr' r = 1, .. , R, which correspond to the exact derivatives, cf. (16). 
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(III) The eorreeted values of the first derivatives of the stiffness components with respect to the 
design variable aj = z can now be assembled in il[S( {a })]/ilaj and substituted into (3) along with 
the displacement vector {O} obtained from the analysis problem (1). The pseudo load vector 
{F}. determined from (3) is then substituted into (2), which we can solve for the desired 

} 

displacement derivatives il{O}lilaj' 

Since the result (6.s!6.z)corr' r = 1, .. , R, obtained in step (II) subject to any specified value of z, is 
illdependent of the relative pertubation 'I1z' it is 1I0t required to assign 'I1z a small value in step (0). In fact, 
values of 'I1z taken in the range between 10-1 and 1 have a beneficial effect on reducing truncation errors 
due to the conditioning of the algebra and the computational accuracy of the computer. 

It should be observed that the initial steps (0) and (I) may actually be executed once and for all for the 
type of element and the element design variable a· in question. Thus, precomputed values of the correction 
factors Cr for a givell value of'l1z will be applica1le for all future sensitivity allaiysis problems illvolving 
tile givell type of e/emellt alld desigll variable aj' provided that the origillal value of'l1z is used. 

It is a notable feature of the computational procedure that, after the initial steps (0) and (I), it is only 
required to perform the lIumerical differentation of the stifflless components by means of simple, 
computationally inexpensive, first order finite differences, and yet exact stiffness derivatives are obtained. 

The above results are valid, and the eomputational procedure is applicable, for any of the design 
variables aj' and for any set of values assigned to them. Attention should also be drawn to the fact that 
the eorrectlOn factors er, ef. (14), and the computational procedure as such, are independent of actual 
values of the coefficients Pr and qr of the typical stiffness components, sr' r = 1, .. ,R, in Eq.(7). This 
implies that although the fillite element mesh alterations inherent in shape optimization problems imply 
changes of the coefficients Pr and qr through changes of the values of the design variables, see (5), these 
changes will/lOt affect the computational procedure and the applicability of the initially determilled values 
of the correction factors Cr' 

111US, within the class of stiffness matrices considered, our development may be said to represent a 
general, efficient, and cost competitive method for elimination of inaccuracy subject to both finite element 
mesh refinement and pertubation of design variables in semi-analytical sensitivity analyses. Here, we 
tacitly assume that an accurate and efficient solution procedure for linear equations, is available for 
solution of the pure analysis problems (1) and (2). 

3. EXAMPLE 

We consider an example that has been adopted for display and numerical investigation of the semi
analytical sensitivity inaccuracy problem in [5,6] and error analyses in [8,10]. The example pertains to 
a finite clement modeled uniform Bernoulli-Euler beam of constant bending stiffness EI and variable 
length L, see Fig. 1. The beam is loaded by a given, concentrated bending moment M at the free end, i.e., 
the external nodal load vector {F} and the associated nodal displacement vector {O} of the analysis 
problem (1) are 

{F)T = { 0, 0, . . . . , M)T , (17) 

As in [5,6,8,10], the study will be devoted to the sensitivity of the transverse deflection un(L) = 
ML 2/2EI at the free end with respect to a change of the length L of the beam, so the exact result within 
Bernoulli-Euler theory is 

ilu. ML (18) 
ilL EI 

The example only involves one design variable aj = a since only the total beam length L may vary. 
Let us choose to discretize the beam into a total number of n finite elements of equal length I = Un, sec 
Fig.1. In order to investigate the inaccuracy problem associated with finite element mesh refinement, the 
choice of design variable must both reflect the discretization and the beam length L, and two alternate 
choices of the design variable a will be considered, namely 

a = 1 and a = z = 1-1 , where 1 = Lin . (19) 
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il/n 

Fig. 1. Global finite element model. 

We adopt a beam finite element which is exact within Bernoulli-Euler theory, whereby the element 
stiffness matrix is (see, e.g., [11]): 

SII SI2 -SII S12 

S12 S22 -S12 1.s 
2 22 

-SII -S12 SII -S12 

S12 1.s 
2 22 -S12 S22 

with stiffness components given by 

S - 12 EI SI2 = 6 EI , S22 = 4 EI . 
II - r ' 12 I 

(20) 

In the Table, we now present numerically computed values of the subject design sensitivity for a series 
of values of the number n of elements used in the finite element modeling of the beam, see Fig. 1. The 
unit values in the second column of the Table serve as the exact result to be compared with by 
sensitivities determined by the semi-analytical method. 

Firstly, we present some results whieh we obtain [10], if we apply a standard approach of semi
analytical sensitivity analysis, where the current method for error elimination is not implemented. 

Thus, the values of the semi-analytical sensitivity (lluJIlL)1 in the third column are based on a 
standard first order forward difference approximation of stiffness derivatives with the usc of I as a design 
variable [10], and the relative increment is taken to be TIL = Mil = 10-4. The results show that the semi
analytical sensitivities become increasingly inaccurate with increasing n, and that even the sign becomes 
wrong when we usc more than 63 finite elements. The subsequent column displays the relative error EI' 
and clcarly illustrates the n2-depcndence of E/' The results [10] for (lluJIlL)z in the fifth column arc 
based on application of the reciprocal design variable z = rl and the value Tlz = Il.z/z = 10-4 of the 
relative increment, i.e., the same value as was used for TIL = Mil, and again standard semi-analytical 
sensitivity analysis is carried out. Except for having the correct sign for all values of n, the sensitivities 
are seen to be no more accurate than when I is used as a design variable, and we notice again that the 
relative error Ez exhibits servere n2-depcndence. The sources of these problems are revealed in [10]. 

Let us now adopt the present method of error elimination to help this unfortunate state of affairs. Then 
z is required to be the design variable, i.e., OJ = ° = z, and from (7) and (20) we identify R = 3 and the 
typical z-dependent stiffness components to be 

SI = S22 = 4Elz, S2 = S12 = 6Elz 2, S3 = SII = 12Elz3 , (21) 

where z = nIL, ce. (19). Since we seek to determine lluJIlL and know that ML/EI factors out from the 
result, we assign M, L, and EI unit values in the subsequent computations, whereby we simply have z = 
n. 
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TABLE 
Computed displacement design sensitivities vs. number n of finite elements used in beam 

model 

iJu_ (::t £1 (:-)z ez (::L, e n 
iJL 

1 1 1.000 .000 1.000 .000 1.000 0.3E-14 
2 1 .999 -.001 1.001 .001 1.000 0.9E-14 
3 1 .998 -.002 1. 002 .002 1.000 0.3E-13 
4 1 .996 -.004 1. 004 .004 1.000 0.3E-13 
5 1 .994 -.006 1.006 .006 1.000 -0.lE-13 
6 1 .991 -.009 1. 009 .009 1.000 0.2E-12 
7 1 .988 -.012 1. 012 .012 1.000 -0.2E-12 
8 1 .984 -.016 1.016 .016 1.000 0.IE-12 
9 1 .980 -.020 1.020 .020 1.000 0.6E-13 

10 1 .975 -.025 1.025 .025 1.000 0.IE-13 

12 1 .964 -.036 1.036 .036 1.000 0.3E-12 
14 1 .951 -.049 1. 049 .049 1.000 -O.IE-ll 
16 1 .936 -.064 1.064 .064 1.000 0.7E-12 
18 1 .919 -.081 1. 081 .081 1.000 0.4E-12 
20 1 .900 -.100 1.100 .100 1.000 0.2E-12 
22 1 .879 -.121 1.121 .121 1.000 -0.8E-12 
24 1 .856 -.144 1.144 .144 1.000 0.2E-1! 
26 1 .831 -.169 1.169 .169 1.000 0.2E-ll 
28 1 .804 -.196 1.196 .196 1.000 -0.4E-ll 
30 1 .775 -.225 1.225 .225 1.000 0.lE-11 
32 1 .744 -.256 1.256 .256 1.000 0.3E-ll 
34 1 .711 -.289 1.289 .289 1.000 -0.3E-11 
36 1 .676 -.324 1.324 .324 1.000 0.8E-12 
38 1 .639 -.361 1.361 .361 1.000 -0.4E-ll 
40 1 .600 -.400 1.400 .400 1.000 -O.lE-ll 
42 1 .559 -.441 1. 441 .441 1.000 0.9E-ll 
44 1 .516 -.484 1.484 .484 1.000 0.3E-12 
46 1 .471 -.529 1.529 .529 1.000 0.4E-ll 
48 1 .424 -.576 1.576 .576 1.000 0.5E-ll 
50 1 .375 -.625 1.625 .625 1.000 O.lE-l! 
52 1 .324 -.676 1.676 .676 1.000 0.9E-ll 
54 1 .271 -.729 1.729 .729 1.000 0.7E-l1 
56 1 .216 -.784 1.784 .784 1.000 -0.lE-10 
58 1 .159 -.841 1. 841 .841 1.000 0.7E-l1 
60 1 .100 -.900 1.900 .900 1.000 -0.4E-ll 
62 1 .039 -.961 1.961 .961 1.000 -0.lE-10 
64 1 -.024 -1.024 2.024 1.024 1.000 0.2E-10 
66 1 -.089 -1. 089 2.089 1.089 1.000 -0.5E-ll 
68 1 -.156 -1.156 2.156 1.156 1.000 -0.2E-I0 
70 1 -.225 -1.225 2.225 1.225 1.000 -0.3E-ll 
72 1 -.296 -1.296 2.296 1.296 1.000 0.IE-I0 
74 1 -.369 -1.369 2.369 1.369 1.000 0.4E-11 
76 1 -.444 -1.444 2.444 1.444 1.000 -0.lE-10 
78 1 -.521 -1.521 2.521 1.521 1.000 0.3E-11 
80 1 -.600 -1.600 2.600 1.600 1.000 0.4E-ll 
82 1 -.681 -1.681 2.681 1.681 1.000 0.6E-ll 
84 1 -.764 -1.764 2.764 1.764 1.000 0.4E-10 
86 1 -.849 -1. 849 2.849 1. 849 1.000 0.6E-10 
88 1 -.936 -1.936 2.936 1.936 1.000 0.4E-ll 
90 1 -1. 024 -2.024 3.025 2.025 1.000 0.8E-12 
92 1 -1.115 -2.115 3.116 2.116 1.000 0.4E-ll 
94 1 -1.208 -2.208 3.209 2.209 1.000 0.2E-10 
96 1 -1.303 -2.303 3.304 2.304 1.000 O.2E-10 
98 1 -1.400 -2.400 3.401 2.401 1.000 -0.4E-10 

100 1 -1.499 -2.499 3.500 2.500 1.000 0.8E-ll 

Multiplier: MI)EI 
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In step (0) of the computational procedure, we select Tlz as Tlz = 10-1. In the initial step (I), based on 
the arbitrarily chosen value z = 200 and thus Ilz = 20, from the expressions 

C I = 1 C = ~ -s,(z + 26.z) + 6s,(z + 6.z) - 3s,(z) - 2s,(z - 6.z) ,r 2,3, (22) 
, 6 s,(z + 6.z) - s,(z) 

we determine the correction factors as c1 = 1, ~ = 0.952381.., ~ = 0.906344 ... 
Based on these values, we now in step (II) apply the formula 

(~ L, = c, ~ [s,(z+6.z) - s,(z)] , r = 1,2,3 , 
(23) 

cf. (15) and (Sa), for computation of the corrected derivatives of the stiffness components (~s!~z)corr' 
r = 1, 2, 3, for all the values of n = z required in the Table. For each of these values of n = z, we then 
follow the scheme of step (III) of the computational procedure and obtain the desired displacement design 
sensitivity. The results are denoted by (~urr'~L)eorr and arc listed in the second-last column of the Table, 
with associated errors E given in the last column. The errors £ are simply computed as the difference 
between (~urr'~L) and unity. 

The results illustrate most convincingly that the types of error considered in this paper can be 
completely eliminated by means of the proposed method. The errors arc clearly seen to be small 
truncation errors due to the conditioning of the algebra and limited precision of the computer. Except for 
this type of error, the values of the scmi-analytical sensitivities cannot be distinguished from the exact 
ones. 
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1 Introduction 

Engineering design is an iterative process that strives to obtain a best 

or optimum design. The optimum design is usually one that meets the 

design requirements with a minimum expense of certain factors such as 

cost and weight. 

The usual path to the optimum design is a traditional one. The desired 

function and performance of the design are first defined. Then, primarily 

from experience, a trial configuration is developed with the intent of 

meeting the function and performance requirements. Next an analysis of 

the trial arrangement is performed and the results are evaluated against 

the design requirements. The design configuration is then usually altered 

in an attempt to better meet the design needs and the cycle begins again. 

Design optimization is a mathematical technique that seeks to determine 

a best design based on criteria set up by the engineer. The technique 

generates, analyzes, evaluates, and regenerates series of variations 

until specified criteria are met. The engineer determines the criteria 

and bounds for the design problem, sets the problem up, but leaves the 

task of controlling and executing the design cycle to the design 

optimization routine. 

This paper presents the design optimization module in the finite element 

program ANSYS. The optimization strategie is briefly described and 

examples are given to show the ease of use and the wide range of 

applicability. 

2 The Optimization Approach in ANSYS 

2.1 Definitions 

Design Variable (DV) - design variables represent those aspects of the 

design that can be varied to obtain a minimum objective function. Design 

variables should be independent variables. DVs are often geometric 

parameters such as length, thickness, radius, material orientation or 

even node coordinates. 
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state variable (SV) - state variables represent the response of the 

design to loadings and boundary conditions, and to changes in geometry. 

Each state variable is a function of one or more of the design variables. 

Limits placed on state variables act to limit design response and define 

design feasibility. stresses, displacements, temperatures, and natural 

frequencies are typical state variables. 

Objective Function (OBJ) - the objective function is a single variable 

that characterizes the aspect to be minimized. It is a function of one 

or more of the design variables. Typically weight or cost, it can be 

virtually any design characteristic desired. 

constrained/Unconstrained Problem - a design problem subject/not subject 

to limits 

Feasible/Infeasible Design - a design that satisfies/violates the con

straints (limits) 

2.2. The ANSYS Design optimization Cycle 

The optimization module within ANSYS uses approximation techniques to 

characterize the analysis of a design with a set of quadratic functions 

at each design loop. These functions define an approximate subproblem to 

be minimized, yielding a better design vector for the next design loop. 

The approximate subproblems are updated at each design loop to account 

for the additional information, and the process continues until con

vergence criteria are met. This procedure attempts to gain maximum 

information from each finite element solution while preserving generality 

in the choice of design variables, constraints, and objective. Following 

determination of the approximations, the constrained approximate problem 

is converted into an unconstrained one by using penalty functions. The 

search for the minimum of the unconstrained problem is then performed 

using SUMT. As a result of this search, a new trial design is determined 

and then analyzed, creating a new design set. The changes in the 

objective function and the design variables between this design and the 

best design yet encountered are evaluated to determine if convergence has 

occurred and a possible minimum is reached. Too many sequential 

infeasible designs or too many design loops will cause termination. A 

design loop is one cycle through design optimization. If neither 

convergence nor termination occur, the approximations are updated to 

account for the new design set and the cycle is repeated. This process 

continues automatically until convergence or termination is indicated. 

These steps (Fig. 2.1) are discussed briefly in the following sections. 

More details can be taken from [1]. 
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FlNITE ELEMENT ANAlYSIS 

REGRESSION ANALYSIS TO 
DETERMINE SUBPROBLEM 

SOLVE OPTlMIZA TlON 
SUBF~OBLEM (SUMT) 

DETERMINE 
NEXT TRIAL DESIGN 

Fig. 2.1 The ANSYS Design optimization Procedure 

2.3 The Approximation of the Objective Function and state Variables 

By default, the objective function curve in ANSYS is approximated in the 

form of a quadratic equation including cross product terms. The state 

variables are approximated in the same fashion as the objective function, 

but the default equation fit does not contain cross product terms. By 

using these approximations, highly nonlinear, arbitrary functions can be 

represented. 

H 

where: 

N N 2 N-1 N 
a o + L: anXn + L: b n (Xn ) + L: L: Cn1') XnX1') 

n=1 n=1 n=1 1')=n+1 
~ 

linear 
~ ... 

quadratic 

quadratic with cross terms 

H approximation of objective function or state variable 

Xn = design variable n 

N = total number of design variables 

an = coefficient for linear term 

bn = coefficient for squared term 

c~= coefficient for cross term 
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The coefficients an' bn, cn are determined by minimizing the 

weighted least squares error of a set of trial designs. 

E2 
S 

- 2 =L WS (Hs - Hs> 
s=l 

where: E2 the weighted least squares error 

S total number at design sets 

Ws weight tor design set s 

Hs exact function value for design set s 

Hs approximated function value tor design set s 

The weighting can be based on the design variables, the objective 

function, feasibility or the product of all three. For each function, a 

multiple regression coefficient R is calculated. R measures how well the 

fitted equations match the actual function data and varies from zero to 

one. At each design loop, either a full or a partial equation fit is 

performed depending on the number of design sets s and the nature of the 

fit. For partial fits, terms are added or dropped each loop. The terms 

that are added to the current fit are those which reduce E. A term is 

dropped if its removal from the curve fit results in an insignificant 

decrease in R. 

Once an objective function approximation is determined, the constrained 

problem is changed into an unconstrained one by using penalty functions 

to enforce design and state variable constraints. The unconstrained 

function, also termed the response surface, is the objective function 

approximation function plus penalties. 

where: 
<Pk 

k th respoilse surface for a given design loop 

F objective function approximation for a given design loop 

Pnk penalty function for design variable Xn and response surface <Pk 

Pmk penalty function for state variable G m and response surface 4> k 

rk = 3 (k-3) = penalty multiplier 

k response surface number (varies from 1 to 5 within a design loop) 

M = total number of state variables 

N = total number of design variables 
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2.6 Looping until Convergence / Termination 

with the new design variables another finite element analysis is done and 

an improved approximate subproblem is generated which allows to determine 

a new design vector. The looping continues until either convergence 

occurs or the problem terminates because the total number of design loops 

is reached. Convergence is defined to have occurred when all constraints 

on design variables and state variables are satisfied and the change of 

the objective function is within a given tolerance. 

3 Application Examples 

One of the strenghts of the ANSYS Optimization technique is that it can 

handle a wide variety of optimization problems. It has been applied to 

statics, dynamics, acoustics, heat transfer as well as electrostatics and 

magnetic field problems and it is even applicable to coupled problems 

e.g. thermal-stress or electro- magnetic-thermal stress analysis. 

The following examples are taken from various pUblications of the program 

developer and from project reports of our company [3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14] 

- Optimization of a connecting Piece under tensile load [3] 

The objective function to be minimized is weight. The shape of the 

model can be described by only three design variables, which define 

the width in the middle of the structure and the outer contour by using 

a spline fit. Only one state variable - the maximum allowable stress -

is defined. 

- Design of a Microstrip Transmission Line [4] 

objective was to find the minimum strip width with the constraints that 

the impedence be 47.67 Ohms +/- 1 % and the strip width fall between 

0.5 and 3.0 mm. 

- Minimization of the Dimensions of a coaxial cable [4] 

It is decided that the electrical field intensity be limited to 

40 % of the dielectric strength. 

- optimum Design for an Involute Spur Gear [5] 

The idea was to find the minimum stress in the fillet. Design variables 

have been number of fillets, radius and pressure angle. 
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- Axisymmetric curved membrane [6] 

The membrane is simply supported at the outside edge and loaded by a 

concentrated force in the center. The objective is to find the minimum 

force to displace the center by 4 rom. The shape of the membrane has 

been defined by cubic splines. 

- Minimization of Costs for a Radial Cooling Fin Array [7] 

objective was to minimize cost as function of fin thinkness, fin 

radius, distance of fins and fluid mean stream velocity. side con

straint was heat loss which was requested to be larger than 25000 

watts. 

- Minimization of the weight of a Truck Frame [8] 

Weight could be reduced by 25 % while limiting the maximum combined 

stress level and torsional stress level in any beam element. The 

problem was solved on a personal computer in 510 minutes. 40 loops have 

been needed for convergence. 

- Frequency Tuning of a Bell [9] 

Given is the initial shape of the Minor Third Bell. The objective is 

to find the shape for a Major Third Bell. To get the tune for a Major 

Third Bell the designer has to make sure that given frequency ratios 

are met. Therefore the objective function results in a minimization of 

the sum of the squares of the deviation of the frequency ratios. Design 

variables are the radii at 9 points, the height and 2 thicknesses of 

the bell. As state variables the ratio of the frequency of the octave 

and the frequency of the major 3 is chosen. For this investigation 

axisymmetric elements allowing nonaxisymmetric loading are chosen. Thus 

the problem can be reduced by 1 dimension which is an important aspect 

for time consuming optimization runs. 

Minimization of the stress Intensity in the Fillet of a Housing of a 

Potentiometer [10] 

The goal of this optimization problem is, to reduce the maximum stress 

intensity which occurs in the fillet of a housing. The shape of this 

fillet is described by four design variables. This optimization problem 

is only constrained in the design variables, a state variable was not 

defined. The maximum equivalent stresses between the initial and the 

final design have been reduced up to 37%. Besides, the stresses along 

the fillet path are much more homogeneous in the final design. 
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- Failure optimization of a Thick-walled Pressure Vessel unter Internal 

Pressure [11] 
For thick pressure vessels, the state of stress or strain is three
dimensional. A 3-dimensional quadratic failure criterion includes 

interaction among the stress or strain components. In this problem, the 

Tsai-Wu quadratic interaction failure criterion is used with layered 

solid elements to optimize the winding angle in a pressure vessel with 

cylindrical orthotropy (one of the axes of orthotropy is parallel to 

the longitudinal axis of the cylinder). The stress distribution across 

the thick-wall of the cylinder is also studied using the optimum angle 

configuration. 

- An Acoustic Design optimization Technique for Automobile Audio Systems 

[12] 

This Example demonstrates the application of an optimization technique 

to the acoustic design of an audio system. The air inside the cabin 

enclosure has been modeled using the acoustic fluid element of the 

ANSYS program, while the walls were assumed to be rigid surfaces. For 

a given location of the speakers in the automobile passenger cabin, the 

orientation of the speakers and the damping of enclosure walls have 

been varied in an attempt to obtain a flat sound level response over 

a frequency band in the audio range. The objective function of the 

design is the difference between the maximum and minimum response sound 

pressure level, (SPL), at a given location. 

- Design optimization of Ultrasonic Plastic Welding Equipment with the 

ANSYS Program [13] 

Both piezoelectric and design pptimizat}on capabilities available in 
the ANSYS program have been used to optimize the shape of a booster in 

an ultrasonic plastic welding equipment. The absolute value of the 

difference between the computed amplitude of the displacement at the 

bottom of the booster and the 2.2 expected value was taken as the 

objective function to be minimized. The first natural frequency of the 

booster was defined as the only state variable and was bounded between 

39.5 and 40.5 KHz. Three independant design variables define the shape 

of the structure. 

- weight optimization of a lifting magnet [14] 

In a lifting magnet the solenoid coil sets up a magnetic field that 

passes through the core, across an air gap, and into the armature. The 

object of the optimization was, to minimize the weight of the whole 

magnet. The cross section of the keeper and the core as well as the 
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length of the air gap were defined as design variables. The only state 

variable was the magnetic force, which should have a fixed value. Under 

this conditions 25 % of weight could be saved. 

4 Conclusion 

A first step into application of optimization techniques in engineering 

is done. The technique offered in the ANSYS program combining finite 

element and optimization technology has been presented. The technique 

first reduces the global problem to a set of relationships between the 

objective functions, design variables, and state varibles. The reduced 

problem is then minimized using the Sequential Unconstrained Minimization 

Technique (SUMT). The advantage of this approach is that it is not 

limited to any particular class of problem and that it does not require 

derivative information. The optimization module is implemented in a way 

engineers who have no in-depth knowledge of this technique may easily 

apply it. Though the application is still limited to a small number of 

parameters due to high computing times, the algorithms are available to 

allow more parameters as more powerful computers come up. It is 

emphasized that optimization requires features as database, solid 

modeling and parametric language. Solid modeling and parametric language 

are prerequisites for shape optimization. Even complicated 3-d models can 

be described with a minimum of variables. Besides, the optimization 

module from ANSYS can be used for other purposes like parameter studies 

or to curve fit results from analysis or measurements. This method can 

be used to correlate experimental results. Al though the SUMT method, 

which is implemented in the ANSYS optimization module, is very powerful, 

because every optimization variables can be assigned to any physical 

meaning, the results may not reflect the absolute optimum or the number 

of necessary iterations may be quite high. It is acknowledged that more 

powerful optimization strategies are available. These can be interfaced 

with the ANSYS program. 
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ANSYS uses extended interior penalty functions in the unconstrained 

problem. Because this type of penalty function is defined and continuous 

over all of design space, it is possible to converge to a feasible 

minimum from outside the feasible region. The objective function 

approximation and the state variable approximations with their con

straints are collectively known as the approximate subproblem. It is this 

subproblem that will be minimized (optimized). 

2.4 Minimization of the Approximate Problem 

The penalized approximate objective .function is minimized using the 

sequential unconstrained minimization technique (SUMT). This technique 

searches for the minimum of the current approximation of the objective 

function [2]. 

For each design loop, five response surfaces are calculated and 

minimized, using the result from one response surface as the starting 

point for the next. The minimum of each response surface is found by a 

series of unidirectional searches in design space, starting at the 

previous best design. This sequence continues until the change in the 

minimum of the response surface is less than a small tolerance. The 

unidirectional searches that occur during this looping process are 

performed using an iterative algorithm. 

2.5 New Trial Design 

When the minimum has been determined for the approximate subproblem, a 

new design is computed. A partial step is taken between the best design 

encountered so far and the design predicted by minimizing the current 

approximate subproblem. 

x - X + A (X - X ) (for n = 1,N) 
nnew - n best npredict nbest 

where: 
X " ~ new value 01 design variable x" 

new 

X "best .. value 01 design variable X n that was used in the best design 

predicted value 01 design variable X" based on minimization 

01 the current approximations. 

A value between 1 and 0 chosen by the program or by the user 
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ABSTRACT 

Sensitivity analysis is one of the cornerstones for the development of 

computer aided structural shape optimization softwares. The semi

analytic sensitivity analysis method proposed in recent years has 

provided an easy way to integrate the existing general purpose FEM and 

optimization paclmges [1,2]. Nevertheless, the method is suffered from 

the inaccuracy problem if the size of the perturbed bending elements 

becomes too small. An alternative forward/backward finite difference 

scheme has been studied to reduce the possible error and implemented in 

MCADS [3,4]. This paper further investigates the problem and suggests 

ways to improve the accuracy of the semi-analytic sensitivity analysis. 

It is shown in this paper that for annular plate and Euler beam elements 

the approximate sensitivity calculated with the semi-analytic method can 

be improved by adding second order terms. For a typical beam example the 

improvement is estimated by making use of computer algebra software 

"MUMATH" to manipulate the approximate sensitivity and its second order 

correction. Numerical results also show that for Timoshenko beam 

elements the accuracy of semi-analytic method is much less dependent 

upon the element size, which is a desirable feature. 

The second part of the paper introduces MCADS system--a Micro-Computer 

Aided Design System. We have incorporated several newest techniques, 

such as semi-analytic method for design sensitivity analysis, 

optimization-analysis modeling for shape design, application oriented 

user interfaces and coupling of automatic optimization and user's 

intervention into the system. A practical example from industry 

involving coupling field structural shape optimization is given. 
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1. INTRODUCTION 

There has been great interest in developing methods for sensitivity 

analysis due to the importance of sensitivity information for many 

areas, such as structural design optimization. system identification and 

statistical structural analysis. The implementation of sensitivity 

calculation is followed with particular interest. The semi-analytic 

sensitivity analysis method proposed in recent years has provided an 

easy way to integrate the existing general purpose FEM and optimization 

packages, and has been in wide use. Nevertheless, the method is suffered 

from the inaccuracy problems if the size of the perturbed bending 

elements becomes too small. This paper has further demonstrated the 

problem for annular plate elements. To reduce the possible error and 

maintain the easy-of-implementation of the semi-analytic method we have 

proposed an alternative forward/backward finite difference scheme in 

[1]. The present paper examines another two ways to alleviate the error 

problem. One way is to add second order terms to the approximate 

sensitivity. Numerical results for Euler beam and annular plate elements 

are presented. For a typical beam example. by manipUlating the 

approximate sensitivity and its second order correction with the aid of 

computer algebra software "MUMATH", we show the error is reduced by one 

order if the second order term is added. Since the error may be related 

Lo the large shear deformation induced by the pseudo-load, we have 

tested Timoshenko beam elements and observed encouraging numerical 

results. 

The second part of the paper introduces MCADS system--a Micro-Computer 

Aided Design System. We have incorporated several newest techniques such 

as semi-analytic method for sensitivity analysis, optimization-analysis 

modeling for shape design, application oriented user interfaces and 

coupling of automatic optimization and user's intervention into the 

system. And a practical example from industry involving coupling field 

structural shape optimization is presented. 

Z. SECOND ORDER TERM CORRECTION AND ERROR ESTIMATION 

Consider a structure whose shape is to be optimized. Denote d=(dt,d l , 

... d i , ... d) the shape design variables, K global stiffness matrix, P 
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external load. The nodal displacement vector u satisfies the equation 

K(d )u(d) ::: P(d) (1) 

Let us perturb one design variable d i by Ad i and define a new design 

d':::(dl,d~, ... d.+Ad., ... d). The displacement vector u' of the new design 
.. lIn 

satisfies 

K(d')u'(d') ::: P(d') (2) 

For simplicity we assume the external load P(d') not changed, and we 

further define A K and A u in 

K(d') = K(d) + AK 

u'(d') = u(d) + Au 

(3-a) 

(3-b) 

Substituting Eq.(3) in (2) and applying Eq.(1), we have 

K(d)Au + AKu + AKt.u = 0 (4-a) 

The first order approximation of A u, denoted by Au', is 

K(d)Au' = -AKu (4-b) 

In the traditional semi-analytic method, the approximate sensitivity is 

given by 

au Au' 
"""'8d '" Ad; 

i ~ 

(5) 

To improve the accuracy of the approximate sensitivity (5), we suggest 

to add the second order correction A u" which satisfies 

and to replace 

au 
"""'8d = 

i 

the approximate sensitivity (5) by 

(Au'+Au" ) 
Ad 

i 

~I----_E_I ----:-' I) 
A 

L ~ I 
1 2 n-l n 

I ~ ~ 
Fig. 1 

(6) 

(7) 

M 

In order to estimate the error of approximate sensitivity (5) and (7), 

let us consider a typical example in sensitivity study, i.e. a 

cantilever shown in Fig.l [1]. The length L, uniform bending rigidity EI 

of the beam, and the moment M acting on its tip A are given. From beam 

theory, the deflection and rotation of the cantilever beam are 
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au 
r?(X) = ax = Mx 

EI (8) 

The tip displacement u A and its sensitivity with respect to L are 

ML 
EI (9) 

In what follows we apply finite element method with cubic shape function 

to solve the problem. The beam is arbitrarily subdivided into n 

elements, and the length of the last element is 1. We write down the 

displacement vector of the last element as 

un = 2~I {(L-l)~ 2(L-l), L2, 2L} T (10) 

The Eq. (10) is obtained from Eq. (8) as well as the results generated 

from FEM because the later provides exact solution in this problem. 

Next, we consider to perturb the length L of the beam. We assume the 

first n-1 elements have fixed length and only the lust element's length 

1 is changed to be l+~l. In such a case, the pseudo-loud in Eq. (4) 

becomes 
n 

-~Ku = - L~k.u. = ~k u 
lin n 

i=l 

and the first order of ~ u is 

(11) 

(12) 

where ~kn is the change of stiffness matrix of the last element. In the 

same way, the second order correction of the pseudo-load is 

_~K~U' = -~k liu' 
n 

and the second order correction of ~ u is 

-1 -1 
liu" = -K liKtJ.u' = -K ~k ~u' 

n 

(13) 

(14) 

The stiffness matrix kn of the last element before perturbation is 

( 15) 

and the finite difference of stiffness matrix is 

li kn (1) = -2EIB = -2EI (16) 



www.manaraa.com

215 

where /3 1 
T/ /3 2 

T/ 2 +2T/ = 1 (1+T/) = , l2(1+T/)2 

T/ 3 +3T/ 2 +3T/ 
(17) 

L11 
/33 = T/ = -1-

13(1+T/)3 , 
And we also need to mention the fact that k n and L1kn in Eq (11-14) have 

the dimension as same as the total degree of structural nodal freedoms, 

but we only write them in 4*4 matrix. The similar for u and L1 u • This 
n n 

is well accepted in computational mechanics. 

Since the pseudo-load and its correction in Eq. (11) and (13) are 

concentrated forces and moments acting on the finite element nodes, the 

displacements and rotations obtained from Eq (12) and (14) are equal to 

the analytic solution. Though we can not write down the expressions of K 

and K-1 because no detail of subdivision for the first n-1 elements is 

specified, the effect of K-1 upon Eq. (11) and (13) can be obtained by 

analytic solution. To do this, we consider the same cantilever with 

arbitrary load vector F acting on the two nodal points A and B of the 

last element, 

F = {p B MB P A MA} T , , , 
From beam theory, the displacement vector of the last element is given 

by 

U = l~~::) = • 6~,CF 

2 (L_l)3 3(L-I)2 (L-l)2(2L+l) 3(L_l)2 

p'l 
1 

3 (L_l)2 6(L-l) 3(L2_12) 6( L-I) MB (18) 
= 6El (L-l)2(2L+l) 3(L2 _12) 2L3 3L 2 

P 'j 3 (L_I)2 6(L-I) 3L2 6L MA 

Based on Eq. (12), (16) and (18), we obtain 

L1u' -1 C 
AI = IT 6El (-2EIB)un = (19) 
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Au" 1 2 
"""'X'l = 9 A I T un (20) 

Note the fact that in Eq (19) and (20) both the vectur A u' and A utI are 

4*1 vector, the interesting quantity, i.e., approximate QuA/aI and its 

correc tion are the third com ponen t of Au' / A I and Au" / l\ I. And further we 

have 

T = CB (21) 

the elements of which are 

T 11= -36B2LI+36B3LI2 -18/J3L 2l+18B2L 2+1813/ _18B}3 

T 12= -1813 lLl+18B2Ll2 -9132L 21+913 lL 2 +913 /! -913 213 

T - T 
13- - 11, 

T :21= -3613 3Ll+36B 2L-36/3 21+3613 312 

T 22= -18132LI+18J31L-18J311+18B}2 

T23= 

T31= 

T3 :.1= 

T33= 

T34= 

T41= 
T42= 

-T 21 T 24 = T 22 , 
-188 3L 2l+ 1813 2L 2 -913 212 +6/3 313 

2 223 
-913:.1L 1+9/3 1 L -6811 +38} 

-T31 

-9B 2L 21+9131 L 2_313 /+38213 

-36;3 3 Ll+361J 2L-1882I+ 188 3 12 

:.I 
-188 :.ILl+ 1811 1 L-12iJ 11+98 21 

Tol3= -T41 

:.I 
T 44-= -18B 2Ll+ 1811 1 L-6/31l+9/3 21 

(22) 

To simplify the further calculation, we introduce the approximation of 

fJt' fJ 2' and fJ:J 

2 
21/-31/ 

2 
J3 '" 

1/-1/ 
B '" {3 '" 

1 -1- 2 12 3 

Then we obtain 

4· 

l: T 31 u n1 
1=1 

3 

= 61/1L-361/2 + +181/2L 2_31/212 

and 
l\ u ~ 

-:rr- = 

31/-61/ 
2 

(23) 
13 

(24) 

in which ML/EI is the exact value of sensitivity auA/aL, and the 
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remammg parts in Eq. (24) is the error linearly dependent upon 7]. The 

term -67]ML3 lEd! is inversely proportional to 12 and is the most 

troublesome term when the size 1 of the perturbed element tends toward 

zero. 

With the aid of computer algebra software "MUMATH" we derive the 

expressions of T2, and obtain 

4- 3 3 
2 2L 22 22 3L 32 3 L (T )3iuni= lOS7] -- -547] L +IS7] 1 -64S7] -1- +547] L +2707] Ll 

i=l 

32 4.L4 4 L3 
-10S7] I +12967] --2 -64S-7]-- +547]4- L2 -10S7]4 L1+637]412 (25) 

1 1 
and the second order correction is 

11 u' , 
A 

til 
ML 3 HI, 2 M 1 M [ 2 L 3 2 L 2 2 2 = 61]-- -37/-- +7]-- + -- -361] -- +31] -- +157] L-67] 1 

EJl 2 Ell EI EI 12 1 
4- 3 2 

3I 3T 3L 3 3J +721/ _J_ - 361] _J_ +37/ -1- -61] L+3.57] 1 
1 3 I 2 

The improved approximate sensitivity with the second order correction is 

= ML 
EI 

It can be seen from Eq. (26) that the part of the 

(26) 

error linearly 

12 , but dependent upon 7] is no longer inversely proportional to 

proportional to 1. The approximate sensitivity is improved indeed. 

Though the part of the error proportional to 7/2 may still have some 
2 

troublesome terms, but they are well suppressed by 7] . 

3. NUMERICAL RESULTS FOR EULER BEAM AND ANNULAR PLATE ELEMENTS 

To demonstrate the improvement by adding the second order correction, 

we present three examples. 

Example 1. Consider a simply supported beam shown in Fig.2. At the 

middle of the beam we have a concentrated force P. The other data are 

shown in Fig.2. The sensitivity of the deflection at the middle of the 

beam is studied, its analytic value is 0.025. 

In Table 1, the figures under the column GFD, SAM and SAMI are results 

from the global finite difference method, semi-analytic method and semi

analytic method with the second order correction, respectively. The 

improvement is easily seen. GFD method also suffers from the conditional 

error when III is small and n is large. 
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The following two examples deal with annular plates under axisymmetric 

loads. The shape function within each element is cubic function w(r)=ar3 

+br2 +cr+d, w is the deflection of the plate. Both examples show the 

error problem of semi-analytic method when the size of perturbed element 

is too small. And the error is not serious as long as we choose 

reasonably small fla. But the accuracy is improved by adding lhe second 

order term correction. 

Example 2. Consider an annular plate whose inner edge is free and lhe 

outer edge is simply supported and subject to uniform moment M. The 

oUler radius a is the design variable. The theoretical results are from 

plate lheory. The data and numerical results are shown in Table 2 and 

the attached picture. 

Example 3. Consider an annular plate whose outer edge is fixed and 

inner edge is free and subject to an uniformly distributed line loads Q. 

The outer radius a is the design variable. Other data and numerical 

results are given in Table 3 and the associated figure. 

4. NUMERICAL EXAMPLE FOR TIMOSHENKO BEAM 

Various explanations have been given to numerical error in 

semi-analytic method. One argument [5] is that sensitivity field is not 

a reasonable displacement field though it is obtained as a displacement 

field induced by the pseudo-load acting on the original structure. The 

pseudo-load is a special load and the sensitivity is dominated by shear 

deformation. To beller model a beam structure with large shear 

deformation, Timoshenlw beam is a proper choice. The same simply 

supported beam as in Fig.2 is treated but with Timoshenko beam elements. 

The resulls are presented in Table 4. By comparing Table 1 and 4, it is 

obvious thal for approximate sensitivity by semi-analytic method lhe 

error problem is much less severe for Timoshenko beam elements than for 

Euler beam elements. Similar observation is expected for thick plate and 

thiel, shell elements. 

5. MCADS AND APPLICATIONS 

MCADS (Micro-Computer Aided Design System) is a general purpose 

structural shape and size optimization program implemented on IBM PC and 
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APOLLO. A general purpose FEM structural analysis program DDJ-W is 

adopted as a black box on which MCADS has been built. DDJ-W has been 

developed by Prof. Zhong Wanxie's group in Dalian University of 

Technology since 1980 and is well distributed inside China. It has many 

interesting features such as a rich element library, free format input, 

chain master-slave displacement transformation and flexible nodal 

specification. In this way, DDJ-W is capable of modeling complicated and 

practical structures. Semi-analytic method for sensitivity computation 

is applied to integrate DDJ-W and optimization packages. In principal, 

any structure DDJ-W can analyze can be optimized by MCADS. Preprocessor 

MESHG and postprocessor GRAPH have made MCADS even more user friendly. 

To meet the need of various design variables, an application oriented 

programming interface in the form of source file is left open. By 

modifying those source files, the user can describe structural shape and 

design elements at his/her will. For example, user can describe 

structural shape/size and design elements by engineering parameters 

appearing in engineering drawing. 

A number of ap]tlications have been done successfully by using MCADS 

[6]. Fig. 5 shows a typical turbine engine disk with hub and rim. The 

present study is concerned with optimum design of the profile of the 

disk. The object is to lower the maximum stress and stresses at certain 

points, limit the radial displacement of the rim and minimize the 

structural weight. 18 engineering parameters are chosen as natural 

design variables. A special subroutine is written for describing the 

structural shape and design elements. The initial and final designs are 

shown in Fig.5. The reductions of stress and structural weight are 

14.91% and 18.52%, respectively. 

CONCLUDING REMARKS 

With the alternative forward/backward finite difference scheme of the 

second order correction, the error in semi-analytic method can be 

reduced to great deal. Use of thick beam or plate element is also an 

alternative to avoid the accuracy problem. Nevertheless, in many cases, 

the semi-analytic method provides excellent accuracy as long as the 

perturbation of design is probably chosen. 
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SIMULATION APPROACH TO STRUCTURAL OPTIMIZATION 
USING DESIGN SENSITIVITY ANALYSIS 

Victor P. Malkov, Vassili V. Toropov 
Department of Solid Mechanics, Gorky University, 

Gagarin Ave. 23, 603600 Gorky, USSR 

Let us consider a general structural optimization problem in the 
following form: 

minimize 

subject to 

and 

N 
Fo (~) J X e R. 

i;.f .. , N 
l' , 

where :x = (.x1,;;c.2,···,) xN) is a vector of design var iables, 

(1) 

(2) 

(3) 

F()(:~) is an objective function, FJ(~)) )=i) ... )M are constraint 
functions, A i and 8~ are given lower and upper bounds on the 
design variables, which define a search region in the N-dimensional 
space of design variables. 

The essence of the simulation approach (Malkov et. al. 1982, Toropov 
1989) consists of the iterative replacement of the detailed model of a 
structure Ci. e. the impl icit functions 'J.(~), /::....o, ... ;J "" \'Ii th the 
simulation model (i.e. the explicit functions Fj' (~) L valid in a 
subregion of the original region [Ai.,Bi],i=i,.~N. The simulation mo
del can then conveniently be used in a particular nonlinear mathemati
cal programming problem of a step. 

In every k-th step of the iterative procedure the following mathema
tical programming problem is formulated and solved: 

. (~) 
fInd the vector ~ * that minimizes the objective function 

r"-(f<.) 
Fo (~) (4) 
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subject to 
F (k)(.x.) c. c· 

J - .... ,J 
J -= i, ' , , , /11 (5) 

and 
A[k) ~ Xi. f. B ~1<) (6) 

A r")~ A L , I!> ["J ~ B i '/ i"".1) ") N 

where ~(1:.)(-!),j=O)")/fA. are the functions, which approximate the 
functions of the initial optimization problem (1) - (3). 

Let us consider the main problem i.e. the problem of the simulation 
model formulation. To simplify notation, we will suppress the indices 
k and j on the functions ~,M (.z..) . 

Assume that the designed structure is decomposed into S individual 
substructures and that the vector of design variables ~ can be divi
ded into S+1 subvectors ~(S),5d)'",,$-I1. Each subvector ::x(S) describes 
the s-th substructure and consists of ns components. The last sub
vector ~(S~) contains the design variables, which describe the struc
ture as the whole (the global variables). 

Assume now that the behaviour of an individual s-th substructure 
can .be described by the function 

(7) 

and that the behaviour of the structure as the whole can be expressed 
in the following general form: 

r-- _ F (f f:X (S~.f) ) F- '.J., .. " s,- )g (8) 

Let us consider the problem of constructing the function (8) assu-
ming that all functions (7) are known (Toropov 1989). The vector 

Cc.. = (a.", a.J"" J a£) T in expression (8) consists of L + 1 parameters, 
which are defined on the basis of results of numerical experiments 
(response analyses and sensitivity analyses) with the detailed model 
for pOints located in the design variable space ~H in accordance 
with some design (plan) of experiments. Then the weighted least-squa
res method leads to the following problem: 

find the vector {b that minimizes the function 

P { t J( "- )2 f{ r. n( ,......) 2.]} G:(g,)== ~1 w/ F(~p)- Fp + [;1 L'Wf L F(~P),i ,- FI') i- (9) 
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is the number of the current point of the plan of experiments, 
is the total number of such pOints, 

~p is the vector of design variables that defines the currrent 
poinL 

F(;p) is the value of the implicit function F(~) in (1),(2) as 
the result of the response analysis at the pOint ~f 

fp=F,(fJr.}f$'~(S+J.») a:) is the value of the explicit function (4), 
(5) at the point ~f ' 

F(X ) . == a F(~) 
-P,£ ~x. is the value of the derivative of the im-

r--

L 

plicit function (1) .(2) with respect to design variable :Xi 
as the result of the sensitivity analysis at the point ~p 
(the first order sensitivity), 

Fp)L is the value of the derivative of the explicit 
function (4L (5) with respect to ,xi at the point ~ p , 

1if:~ and kTpfiJ are the weight coefficients, which correspond to 
values of the functions (1),(2) and their sensitivities 
at the point :x p 

To solve the identification problem it is necessary to choose the 
r-

structure of the function (8), i.e. to define f as a function of 
parameters ~ only. The simplest case is a linear function of parame
ter'S g,. : 

(10) 

where the functions fs) S~l"'J$ describe the behaviour of indi
vidual substructures. To simplify notation, rewrite (10) in the fol
lowing form: 

F(q,,)::a o + 'ial<fJe 
{:.J 

The problem of estimation of the parameters 
linear system of normal equations: 

(11 ) 

leads to the 
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[cpr lwJ lcp] 8:: = [<pJ T [w] E (2) 

where 
[cpJ - is the rectangular matrix consisting of P(N~i) rows 

and L + 1 columns of elements ~t and \f'e, L 

which are defined by expression (11) for every p-th point 
of the plan of experiments, 

[wJ - is the diagonal matrix P(~j))(P(N4.i) consisting of weights 
for all the plan pOints, 

F - is the vector containing the values F (-±p) and F(~p),i. 
for p= L .. "P. 

In the case of linear function 

F(~1) 
F(~1J)1 ao 

F(::.!:1),N 
0 4 

F == 0..= 

l 
. , ' at... ;= (~p) 
~(~~)f 
F(~p), II 

1. ~"1 t.(J J L 

0 \(111,1 t.fJ" /...) J 

[1>1 0 l(' 11, N 
.. f.H.,N -

, 

J 'fP1 'fn 
0 Iff'f, 1 ..p PL)'" . . . 
() !f?Pf,N ... l{lPL,N 

The procedure described above can be generalized by the application 
of intrinsically linear models. Such models are nonlinear, but they 
can be led to linear ones by simple transformations. Note among them 
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the multiplicative function 

with the transformation 

L. 

&1.. F (q::) ;::: etL ac + 2. ae· tt1. 'Pe 
(.,.1 

In the case of multiplicative function 

e,,1.. F(~/) 
F (~1)1 ( ... en. a" F (~J),N 
... 0. 1 

F:: Q= 

ell. F(f5p) 
UL 

F (~P)'~ 

F(~ p), Ii 

1 fIt fl1 {it.. .fin 

0 
F (x-() tf'-, 
~'H 11,-( 

.. F(~d If. 
'f"L 1/.,1 

0 
F(~,) 

IfN,,, 4#-1..{J-f1 1; i.fu .. ) N 

&] = 

:1 e~'I- '1"1 . , ... tn.. tfPL 

0 F (~e.) If, 
l.P 1'1 1'1, -( 

F(Xp) cf 
~P1 P£,1 . .. ~ .. . 

F (x~) F l:x f.) If . "'Pi'" 0 C;PIf PI, 1'1 '-PPl , 

(13) 

(14) 
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Test problem: two-bar truss (Svanberg 1987). 
Consider the two-bar truss in Figure 1 under the external force ~ 

where Fx. = 24.8 kN, Fy = 198.4 kN. 
There are two design variables: Je1 (cmz) is the area of the cross 

section of both bars and JCz (m) is half of the distance between 
nodes 1 and 2. The vertical coordinate 
of nofe 3 is fixed: y~ = 1 m. The objec
tive function is the weight of the struc
ture and the constraint functions define 
stress in both bars, which must not be gre
ater than 100 N/mm2. • For this simple 
problem all functions can be formulated 
analytically: 

Fa (:t"x.z.):: c, x 1 V (1-1- ;x1) 

F, (:x,) ;](2)= C2.. VIJ. + .x/) 7(1 + -( ) fl e ~, x,x.z .:x~ 

where C1 = 1.0, L2. = 0.124 and A1 = 0.2, Az = O.L 
8 1 = 4.0, 13,2. = 1.6. 

A feasible starting point has been chosen as follows: Jrf~)= 2.5, 
Jrz(p) = 1.0. The simplest form of the multiplicative expression has 

been used for the approximate constraint function: 

The objective function has been approximated by linear expression: 

.-- . 
Fo (XI, Xz):: tl" +- 0'1 :x 1 -+0,2 X z 

'" * The solution of this problem as given by ::;:'1 = 1.4L ;x~ = 0.38, 
Fa (~.) = 1.51 has been obtained in 6 steps. 
This test problem has been used by K. Svanberg (1987) to compare 

various optimization techniques. The minimum number of required itera
tions (k = 5) was obtained using the method of moving asymptotes 
(MMA). 
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Abstract 

Modulef - A FEM Tool for Optimization 

S. Kibsgaard 
Institute of Mechanical Engineering 

Aalborg University 
Pontoppidanstraede 101, DK - 9220 Aalborg East, Denmark 

This paper deals with the development of a shape optimization system. The advantages of 
using publicly available sub-programs are discussed, and the problems that are associated 
with interfacing them, and how to solve these, are described. In particular we emphasize the 
treatment of the analysis part of such systems, and it is described how it is possible to obtain 
an analysis module that is easily integrated in a larger system concept by making improve
meTlts and extensions to the finite element program Modulef. The extensions made to Modulef 
(i) facilitate boundary shape variation, modelling the boundary by parametric curves defined 
by the position of master nodes, (ii) allows for evaluation of design sensitivities by means of 
numerical finite difference techniques or by semi -analytical differentiation, and (iii) facilitate 
the interfacing with other programs by using the Modulef concept of data structures for data 
transfer, storage, etc. Two examples, illustrating the system performance, will be presented. 

Introduction 
An evolution towards more and more automated design processes has evolved in modern times. In 
particular, most of the critical engineering components arc now being developed in an interaction process 
between the designer and the computer, and commercially available computer programs for decision 
support, design aid, strength calculations etc. arc now widely used in the engineering community. 

A fairly new generation of such programs are now being developed under the common label "Integration", 
i.e., by intcgrating earlier programs, each performing complex tasks like the above, towards larger 
software packages that arc able to support a steadily increasing part of the design process. Eschenauer [1], 
Braibant & Fleury [2], Esping [3], Santos & Choi [4] etc., have dealt with the development of this type 
of system. 

In 1989 Kibsgaard et.a!. [5] formulated a general concept of an integrated system for design, analysis and 
pptimization, based on experience from the prototype shape optimization system CAOS dcveloped by 
Rasmussen [6J,(7] which combines computer aided design, finite element analysis and mathcmatical 
programming techniques into an integrated package. This strategy has so far lead to the development of 
new optimizer strategies, Rasmussen [8), studies of semi analytical design sensitivities, Kibsgaard [9J, and 
the deVelopment of a new theory on reducing the errors in the semi-analytical method, Olhoff [10]. 
Furthermore the project has been extended by the integration of topology optimization as described by 
Bends0e [11], Olhoff et.al. [12]; and Thomsen [13] has considered optimization of fibre layered composite 
discs, using the methods of Pedersen (14], to be integrated in the overall system. 

One of the central elements in the concept is the analysis system used to calculate the structural response. 
The program must be capable of coping with all kinds of geometries and loadings, should be "easy" to 
interface with some sort of boundary parametrization technique, and it must be possible to implement code 
for sensitivity analysis. These arc conflicting demands, on the one hand you wish to have the insight and 
confidence in the code that comes from writing it yourself, and makes changes easier. However on the 
other hand, it will take years of programming to get the desired high standard, generality and complexity 
that most publicly available finite element programs possess. The dichotomy can be solved using the 
Modulef program (sec Bernadou et. al. [15]). Modulef is a non-commercial, but publicly available finite 
element program, fully portable, written in standard FORTRAN 77, and consisting of some 3000 
subroutines. It has well defined, but a bit complicated, programming standards, data structures and in
terfaces, and the user has full access to the source code. Modulef has approximately 40 elements for 
static, linear elastic analysis, and well developed facilities for mesh generation, visualization, storage, 
solution etc. For these reasons the MOOulef program is chosen for finite element discretization and 
analysis, and the programming standards of MOOulef form the basis for corrections, adjustments and 
extensions in the overall concept, thus making the Modulef library fully integrateable in the optimization 
system. 
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This optimization system is so far only capable of handling 2D-structures, thus some of the considerations 
in the ensuing refer only to the treatment of structures that can be discretized in 2D, i.e. plane or axi
symmetric structures. 

Modulef Standards 
Two of the key elements in the Modulef programming standards arc the use of strictly defined data 
structures, and the dynamic managemcnt of memory. 

Dynamic management of memory implies that all data in the program arc stored in one single array, called 
the super array, regardless of whether the data arc characters, integers or real numbers of single or double 
precision. Each time data is to be stored, you simply allocate a segment of the super array using the 
management utilities of Modulef. These can also be used for retrieving, readdressing, renaming, or 
copying data, and for making previously used space available for other storing operations. Due to the 
utilities there is no need to keep track of addresses, lengths etc. of the data, and they can be used in 
different parts of the program, without having to pass them as arguments or commons. It is however 
preferable to pass them as arguments whenever possible, considering the time spent for utility operation. 

The different data structures arc described in INRIA [16]. They arc all built according to a set pattern, 
each with individual features, depending on the purpose of the structure. They can be stored in the super 
array, on files with sequential access, on files with direct access, or partly in core, partly on file. The 
structures arc used for storage or data-transfer for large datasets, describing input or output of a given 
program module. For example, geometric meshes arc stored in a data structure of type NOPO, boundary 
conditions in type BDCL, stresses in type TAE, materials data in type MILl etc. The general data structure 
is built of a number of individual arrays (normally 6, but it varies from 4 to 23, depending on the 
complexity of the data stored). The first array describes the date and time of creation, username, type of 
the structure, name of the problem etc. The last array generally contains the data in question; and the 
arrays in between contain information about the last one, how it is stored, the number of elements in it, 
the type of variables etc. General management utilities performing basic tasks like inclusion in the super 
array, storage on file, copying data structures, updating data structures etc., arc also included in Modulef, 
and there is also a number of specific tools for each individual type. 

The above Modulef standards makes the concept very flexible, passing the super array as the only 
argument in the routine calls, is sufficient to make all data shareable between the individual modules of 
the program, and the generality of the data structures makes it possible to either store all datasets ill, 
central memory or on file, Thus giving a very flexible program-structure depending on the capacity of 
your computer and the desired computing speed. 

Each data structure is self-consistent and self-explanatory in principle, thus making interfacing with other 
programs pretty simple. The self consistency however demands a lot of memory, because a lot of 
information is irrelevant at times, and a lot of identical information has to be stored in several data 
structures, that might be in core simultaneously. The many necessary utility routine calls also makes the 
program work somewhat slower, and the routines use some memory as well, to keep track of the length, 
name and address of stored data and data structures. 

Design model 
Many commercial finite element programs have been endowed with some sort of optimization facility, 
which normally only define design variables as the point coordinates and cross sectional dimensions that 
anyhow should have been entered in order to perform the structural analysis. This kind of system rarely 
gives the user the possibility to define shapes of lines, curves and interfaces as design boundaries. To 
integrate the latter possibilities in the present system we have defined a so-called design model. The 
design modcl of a structure is a representation of the geometry of the structure. The design model is to 
be used as the basis for the analysis model in calculating the structural responsc and the design sen
sitivities, and in updating the design, and it must therefore include sufficient information to form the 
model for structural analysis, as well as the model for optimization, including the definition of the design 
variables. We illustrate this with the example in fig. 1, the classical fillet problem, which among others 
has been treated by Bends0e & Kikuchi [17], Soares et.al. [18] and Rasmussen [19]. 
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To analyze the initial structure it suffices to use 
the points marked with crosses as basis for the 
analysis model, but if one of the contour lines is 
not straight it becomes necessary to have the shape 
of the non straight boundary curve as input for the 
analysis as well. This could be as a function 
expression or as coordinates of the finite clement 
nodes on the boundary. 

Likewise, if the contour lines arc to remain stra
ight in an optimization process, it suffices to usc 

A 

+ + 

the position of some of the corner nodes, marked Fig. 1 The initial geometry of the fillet. 
with crosses, as design variables. But if we want 
to perform the classical stress minimization, by 
changing the shape of the dotted contour line, it is necessary to use its shape as design variable for 
sensitivity analysis and optimization, either by using the coefficients of a function expression directly as 
design variables, or by using some geometrical entities like point coordinates, curvatures etc. as design
variables to determine the shape of the curvc. 

Based on successful experiences with the prototype system CAOS, Rasmussen [6],[7], the boundary 
parametrization strategy has been chosen as the so-called master node technique. The positions of the 
master nodes govern the design boundary shape by curve fitting, using functions of some specific type. 
Up to now polynomials, pieccwice straight lincs, cubic splines and B-splines are implemented. The master 
nodes, which control the shape of the dotted boundary of fig. 1 are encircled. 

By including the corner points and the master nodes in the design model, we achieve full control of the 
shape of the structure in question, and it is possible to use the coordinates of either type of points as 
design variables. 

Furthermore it must be possible to control the move direction and interval. This is done by defining 
vectors, that can be chosen as the move directions and intervals of one or more of the points in the design 
model. These modifier vectors can be defined using some of the existing points, or we can define and usc 
some new points to be included in the design model. These are called modificr points, and they are shown 
in fig. 1 as the points markcd with pluses. In the present example all the master nodes, and none of the 
corner points, arc used as design variables. The modifier vectors arc all defined with the corner point A 
as the base end, and different modifier points as the point end. The modifier vectors in question arc 
markcd symbolically with arrows at their corresponding master node. 

The total design model thus consists of three parts. The first one defining the corner points, master nodes 
and modifier points together with a description of the curve types, and how they should fit, the second 
part describes the modifier vectors, using the points and nodes of the first part, and the third part describes 
the connexions between the modifiers and the corner points or master nodes. In this way it is possible 
to use a mixture of modifiers and points/nodes as one design variable, and it is much less expensive to 
link them together in this way in the problem formulation, than to impose extra constraints on the 
optimization problem 

Mesh generation 
The structures to be optimized by a general optimization system can take on various geometrical forms, 
and the mesh generation routines must therefore be able to generate well adapted element meshes for many 
kinds of geometrically complex domains. Thus, it must be possible to remesh the domain, as it changes 
with a change in the design variables, in order to perform a new structural analysis, and it must be 
possible to rcmesh the domain as a function of a given perturbation of one of the design variables, in order 
to perform the semi-analytical design sensitivity analysis, which requires an unchanged mesh topology. 

It is also evident, that in order to be able to utilize all the analysis capabilities achieved by integrating 
Modulef, the mesh generation must be able to generate all kinds of meshes, e.g., segmented, triangular, 
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quadrilateral, tetrahedral, pentahedral and hexahedral meshes, all with or without midside and interior 
nodes. Moreover the mesh generator must be able to re-number, smoothen, relocate, and to refine, etc., 
a given mesh. 

Modulef possesses all the above capabilities, as described in George [20], thus making it unnecessary to 
implement further mesh facilities. However, it is essential to integrate the existing facilities with the design 
model, in order to take advantage of their properties. 

The design model has been included in Modulef using one of the data structure facilities, termed an 
associated array. The design model is stored in such an array, and it is then possible to associate it to 
any type of data structure. The data structure in question is updated to contain all storage information 
about the associated array, and the management utilities will treat them as a connected whole. Associating 
the design model to a geometric net in a data structure of type NOPO thus makes the information available 
for all other parts of the program, as long as the data structure in question is in main memory. The only 
limitation is that the super-array must be in the calling arguments list of the subroutines. The different 
mesh routines arc then able to read the data defining the design model, and to use these to generate the 
desired mesh, to remesh a domain, to perturb the mesh, etc. 

All in all, the integrated design model! 2D-mesh generator is able to generate the mesh types indicated 
in fig. 2., The first column being the initial mesh generated in a domain by either mapping or free
mesh, the second column is a remesh of a perturbed domain, the third column a perturbed mesh of a 
perturbed domain and the fourth column is a smoothed perturbed mesh of a perturbed domain. The 
perturbation being grossly exaggerated to that of a finite difference sensitivity analysis (overall or semi
analytical). 

~------------------------------------------------------~ 
Smoothed perturbed basic mesh in perturbed domain 
Perturbed basic mesh in perturbed domain 
Remesh of~bed domain 
Basic mesh 

-r-t--l--I-I-+-t--r-I 

--li-t---I--I--1H-l 

-"'--T-t-+-I--t-T 

'-... ~....J--,-,-

Fig. 2. Mesh generation of a perturbed domain 

-rt-l--I-I-+-t-,I

'-... vV' 

The mesh possibilities illustrated in fig. 2 gives the user various choices to perform finite difference based 
sensitivity analysis, either overall or semi-analytical. All in all there arc five possible ways to remesh the 
perturbed domain - the free remeshing of a perturbed domain is the only method to be excluded, because 
it changes the topology of the mesh. 

The remeshing of a domain, necessitated by changes in the design variables from one iteration to another, 
can also be done in most of the illustrated ways -only the unsmoothed perturbed mesh method is to be 
excluded, for mapping as well as for free mesh, due to the strong distortion of the elements along the 
boundary, that accrucs from major shape changes. 
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The mesh facilities can of course be mixed according to the users wishes, as we will se in a subsequent 
example, and they constitute a very powerful discretization tool in the optimization system. 

Sensitivity Analysis 
The sensitivity analysis has been programmed in a very general way, due to the documented Modulef data 
structures for storage, so this part of the programme is valid for almost all the finite clement types 
contained in Modulcf. Semi-analytical sensitivity analysis is implemented for all the lincar elastic clement 
types, including beam, disc, plate, shell, solid, and axisymmetric shell and solid elements of various 
configurations. The semi-analytical method is implemented for deflections as well as for stress, and 
volume and compliance sensitivities are also implemented. We refer to Kibsgaard [9] for a study of the 
clement sensitivities, and further studies for other finite clement types are in progress. 

Interfacing 
Modulef has postprocessing facilities for most 
types of results, and for many graphical output 
devices, as described in George et. al. [21]. There 
is however a paucity of routines for stress visua
lization, and interface programs to Patraa has had 
to be implemented, so as to use this excellent 
program for visualization of Modulef results. Due 
to the documented data structures for storage, and 
the management utilities, it has been a moderate 
task to program the intcrface. 

Examples 
The overall optimization system is still under 
development, but the modular construction of 
Modulef and the implemented extensions, makes 
it vcry casy to build a small command file of 
some 20-30 lines, that calls the required modules 
for a given optimization task. The mathematical 
programing problem is formulated according to the 
bound formulation of Olhoff [22], and a simplex 
routine is used as optimizer. 

Eilkt 
The first example is the well known fillet pro
blem described in the section on the design model. 
The fillct is loaded with a unidirectional line 
loading with a magnitude of 100 Nlmm, and 
supported as illustrated in fig. 3. The objective is 
to minimize the maximum value of the "von Mises 
reference stress", by changing the shape of the 
sloped boundary segment. The master node move 
directions and intervals are as illustrated by the 
arrows of fig. 1. 

The iteration history is shown in fig. 4, and the 
final geometry and mesh is shown in fig. 5. 

The fillet has been discretized using a free mesh 
method, and the finite clements are 3 node trian
gular constant stress clements. The sensitivity 
analysis has been performed by the semi-analyti

Fig. 3 Fillet, support and loading 

Iteration history 
Fillet, von Mises Stress 

::~-""-.'.'-...... . .. . ....- =~:: 
120 ..•.... ---: ....... ............ = 3200 

100 ........ 2800 

80 .. . ........... ......... .... ........ ..... .. .. . ........... 2100 

60 • • • • 2()()() 
o I 2 3 4 6 6 , 8 9 ~ I I ~ U ~ ~ 

I/afa/ion No. 

- VOIUIM - Von MI ... atr ... 

Fig. 4 Iteration history for the fillet problem 

cal method, based on an unsmoothed perturbed Fig. 5 Final geometry and mesh for the fillet 
basic mesh in the perturbed domain. 
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The optimization terminated in 6-7 
iterations with a move limit of 12%, 
and the results are in good agreement 
with those of the literature. BU.khead-panei 

PVC-core 
Sandwich plate joint 
The second example is also a fillet 
problem, inspired by the Danish naval 
"Standard Flex 300" programme. 

PVC-core (filet) GRP Rei! forciY:l 
lamilate 

The Standard Flex is a mUltipurpose 
naval ship with an overall length of 54 
meters and a displacement of 300 ton. 
The ships are entirely built in GRP
sandwich (GRP .eq. Glass fibre Rein
forced Polyester), thus making them 
the largest GRP-Iaminate ships in the 
world. 

Polyester-fililg 

Fig. 6 Typical Hull-Bulkhead joint (T -joint) 

One of the weak spots in sandwich 
plate constructions is the joint that 
connects orthogonal panels. A detailed 
figure of the traditional way to manu
facture these T -joints is shown in fi
gure 6. 

The objective of the optimization 
process is to minimize the maximum 
tensile stress in the skin and reinfor
cing laminates, with a constraint on 
the core stresses, that they are not to 
exceed 1 N/mm2. The design boun
daries are the outer an inner contour of 
the reinforcing laminate, with 5 equal
ly distributed master nodes on each 
contour, and the corner points in each 
end as design points. Each modifier 
vector is attached to two pairwise 
design points, so the thickness of the 
skin is forced to remain constant. The 
load and support conditions are illustrated on fig. 
7, with the optimized geometry. 

All the materials are computed as being isotropic. 
The skin with a modulus of elasticity, E = 15000 
N/mm2, and Poissons ratio v = 0.26. Core: E = 
120 N/mm2, v = 0,38. Polyester filling: E = 3500 
N/mm2, v = 0.4. 

The GRP-skins are meshed with a mapping 
method, using 4 node quadrilateral CST-elements. 
The core, the fillet and the polyester stopping are 
meshed with a free mesh algorithm, using 3 node 
triangular CST-elements. The initial mesh of the 
critical area is shown in the "blow up" in fig. 7, 
together with the final geometry of the structure. 

geometry, with a "blow up" of the critical area. 

Iteration History 
Sandwich Plate Joint, Main Stress 
AJ.x. 51(/" S,'.n M~Jc CC'~ SIr"' $ 

3::~ ...... "" ............................................... ::5 
36 ... ............ ... ........ . .... ..................... ............ " 

325 ... ...... ••. , ................. .. ....................... , ... : ....... a85 

30 ............. ... .. .... . ......................... , .. , a~ 

21 5 ....... ... . . . . ... ., , ..... ... .. .... a35 

o ro '.5 ~ 

1t6r8lion No. 

- Mulmum Co,. S.,... - Mulrnum Sk.ln su ••• 

Fig. 8 Iteration history for the sandwich plate joint 
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The optimizer is a simplex routine with a move limit of 3%, this lead to the somewhat unstable conver
ging iteration history of fig. 8. The skin stress is reduced by 25% in the optimized geometry shown in 
fig. 7. The same results were obtained with a move limit of 0.5% in app. 90 iterations, but avoiding the 
unstable convcrgence. 

The optimized shape is somewhat surprising, one would expect much smaller curvatures of thc reinforcing 
laminate in both ends. The reason for the large curvatures is probably due to a poor calculation of the 
stress ficld in the vicinity of the kinks, partly because of somewhat distorted clements, and partly because 
CST-clements arc not to well suited for modelling slender structures like the laminate skin in question. 
A finer discretization and better clements is expectcd to give a smoother gcomctry of the reinforcing 
laminate. 

Conclusions 
The present paper has given a brief description of Modulef as a finite e1emcnt tool for optimization, and 
some of its vital standards for programming. It ought to be clear, that to achieve the same analysis and 
mesh gencration facilities by programming from scratch, would have taken significantly longer than the 
app. 2.5 man year so far involved in this project. 

The mesh generation facilities are of vital importance to any finitc elcment package, but even more 
important in an optimization system. Thc "Sandwich Platc Joint" example gives some insight in the kind 
of complex domains the mcsh facilities arc able to handle. The inclusion of free mesh algorithms in 
gencral optimization systcms has made discretization much easier, and it is the authors belief that the 
smoothed pcrturbed free mesh of perturbed domains can satisfy any sensitivity convcrgence requiremcnts 
quite as well as a mapping rcmesh of a perturbed domain, the latter being, at present, favored by many. 
As far as the author is concerned it is however unnecessary to remesh the domain interior for sensitivity 
analysis, in the belief, that if the discretization is so fine as to calculate the structural response 
satisfactorily, the perturbed basic mesh in perturbed domain strategy is sufficiently accurate for design 
sensitivity approximation. 
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COMPUTER AIDED MUL TICRITERION OPTIMIZATION SYSTEM IN USE 
Andrzej Osyczka 
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31-155 Krak6w POLAND 

Abstract: In the pdper softwdre Pdckdge cdlled Computer Aided 
Multicriterion Optimization System (CAMOS) is briefly described. The 
system endbles the designer to solve single dnd multicriterion 
optimization problems for nonlinear programming models with 
continuous. integer. discrete and mixed design varidbles. The system 
is designed to facilitdte the interdctive processes considering both 
input/output information arrangement and multicriterion decision 
making problems. Several engineering design examples are presented to 
show the advantages of the use of the system. These examples deal with 
design and optimization of helical springs. hydrostatic journal 
bearings. helical gedrsets multiple clutch brakes. Multicriterion 
optimization models for all the examples are briefly described and the 
computer aIded design sessions with CAMOS are presented. The structure 
of CAMOS and the subroutine which describes the design problem dre 
arranged in the way that the analysis. optimization and decision 
making phases are one entity. The analysis and decision making phases 
can be supported by a graphical illustration of the problem 
formulation and the solution obtained. Both the system dnd problem 
oriented computer aided optimum design modules are coded in FORTRAN 
and prepared for dn IBM PC/XT/AT. 

1. Introduction 

To endble the designer to participate actively in strdtegy of 
seeking the best design. most of optimum design methods are recently 
developed towards interactive on line use (1). (2). (3). For 
multicriterion design optimization. these interactive processes refer 
to problem analysis. optimizdtion routines and decision making 
environments. Graphics fdcilities should also be available so that the 
required data can be displayed for the designer. 

In this paper the Computer Aided Multicriterion Optimization System 
(CAMOS) is briefly described (4). The aim of this system is to combine 
analysis. optimization and decision modules into one entity. The 
possibilities of the system are shown by means of several optimum 
design examples. 

2. Description of CAMOS 

The software package CAMOS is prepared to solve a multicriterion 
optimization problem of the form. 

k min (f(x) E R I g(x) ~ 0 
x E Rn 

h (x) = 0 

where: x vector of n design variables 
fIx) vector of k objective functions 
g(x) - vector of m inequality constraints 
hex) vector of p equality constraints 

(1) 

To solve nonlinear programming problems with continuous variables the 
following single criterion optimization methods are used: 

RS Random Search method 
DS - Direct Search method of Hooke and Jeeves 
8M Simplex Method of NeIder and Mead 
VM Variable Matrix method of Davidon. Fletcher and Powell 
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FT - Flexible Tolerance method 

The random search method is used to 
(i) generate a good starting point for remaining iterative method, 
(ii) solve models with discrete, integer and mixed design variables, 
(iii) generate a set of Pareto-optimal solutions for both continuous 

and discrete models. 

Each of the iterative method, 
used separately or together with 
results obtained using RS method 
iterative method. 

i.e. DS, SM, VM and FT method can 
the RS method in the way that 
are the starting solutions for 

be 
the 

each 

To solve multicriterion optimization problems the following methods 
are available in CAMOS 

1. Min-max method 
2. Global criterion method 
3. Weighting min-max method 
4. Weighting objective method 
5. Normed weighting method 
6. Method for generating a set of Pareto-optimal solutions (used 

only with RS method). 
The solution of the multicriterion optimization problem is 

understood here as findig a Pareto optimal solution which verbally can 
be defined as the point x* for which no criterion can be improved 
without worsening at least one other criterion [5J. 

The structure of CAMOS is such that the user prepares a problem 
dependent subroutine which has a computer aided design form. This 
subroutine is linked to the system to make an executlon version of the 
program. The way the program is then executed IS presented in Fig. 1. 

IntroductIon of the problem dependent data and/or 
graphIcal representatIon of the problem 

Introduction of the 

CalculatIons ill the optimlzatlon procoss 

Results of the optImizatIon process and/or 
graphical illustration of the solutIon 

y N 

Fig. 1: General concept of CAMOS 

STOP 
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CAMOS is deSIgned especIally for interactive use on mikrocomputers 
and it is coded in FORTRAN. HELP utilityy offers a special category of 
information on all data to be introduced. 

3. Applications of CAMOS 

3.1. OptImal design of helical compression springs 

Optimization modeL 

Vector of design variables is 

x WIre diameter 
1 

x - mean coil diameter z 
X3 free length 

x - number of actIve coils • 

x 

The forth design variable may be considered as the integer variable. 

Vector of objective functions is f(xl = [f (xl, f (xl, f (Xl]T where: 
i z 3 

weight of the spring 

fz(xl - outer dIameter of the spring 

fg(xl - length of the sprIng 

Optimization resuLts 

An example of the final stage of a computer aided session with CAMaS 
for the above model is shown in Fig. 2. These results, made in the 
form of a hard copy of the screen present two solutions obtained for 
different weIghting coefficients using weighting min-max method. 

3.2. Optimal deSIgn of multiple clutch brakes 

Optimization modeL 

Vector of design variable is 

Xi - inner radius 

outer radius 

thickness of discs 

x 

number of frIctIon surfaces 

where: 

The forth deSIgn variable is consIdered as the integer variable. 

Vector of objective functlons is f(xl [fi(xl, fz(xl, f 3 (xl, f.(x)]T 

where: f1(xl 

fz (x) 

weight of the brake 

stoping time 

f 3 (xl - number of frlction surfaces 

outer diameter 

Optimization resuLts 

Similarly as for the sprIng design two final solutions obtained while 
working with CAMOS are presented in Fig. 3. 
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----------- -- -- --- -- .. ------ ...... ------ .... ---_ .... -- --- -_ .............. -_ ........ -_ ........ .. 
WEI6HiJrl6 MIN-MAl MeTHOD 

................ --- --- .. -- ...... -_ .. ---- .... -- ----------- .... -- -- --- -_ ...... -_ ............ -_ ........ .. 

WEIGHTING COEFFICIENTS 
.2000 .6000 .2000 

STARTIIIG POWT CHOSEN BY THE SYSTEM FOR 5EEI:JrlG THE OF'TIMUN 
• 857970E+01 • 732759E+02 .218848E+03 

V~LUE OF I OB.1ECTlVE FUIICTlON = .1183609E+01 
VALUE OF 2 OBJECTIVE FUIICTlON = .7884743£+02 
VALUE OF 3 OBJECTIVE FUNCTION = .2001623E+03 
VECTOR OF DECIS!ON VARIABLES 

.8266836E+01 .7058059E+02 
VALUES OF ItIEQUALlTY CONSTRAINTS 

• 298~774E +02 
• 5266836E +01 
.95B0371E+02 
.900000(IE+01 

.1254959E-03 

.1537800£+01 

.8266836E+Ol 
.3351909£+(10 

WEIGHTING COEFFICIElnS 
.6000 .2000 .2000 

.200 1623E +03 

• 2115257E +02 
.9600000E+02 
.7058059E+02 
.3664809E+Ol 

.11 OOOOOE +02 

.5231376E+02 

.2757981E+01 

.20016~3E+(I3 

5C.:''-:: 1.0: 1.0 

STARTING POIIIT CHOSEIl BY THE SYSTEM FOR SEEKING THE OPTIMUN 
.857460E+Ol • 787090E +02 .22904 5E +03 

VALUE OF I OBJECTIVE FUNCTION = .1141959E+OI 
VALUE OF 2 OBJECTIVE FUIICTlON = • 8530085E +02 
V~LUE OF 3 OBJECTIVE FUIlCTION = • 1890451E+03 
VECTOR OF DECISION VAF:IABLES 

• 8460248E +01 .7684060E+02 • 1890451E+03 • 9000000E +0 1 
VALUES OF H1EGUALITY CONSTRAINTS 

.4095489E+02 • 336b487E +0 1 .1469915E+02 • 5839035E +02 
• 5460248E +01 .2082547E+Ol • 9600000E +02 .2723BI5E-02 
.5863880E+03 .8460248E+Ol .7 684060E +02 • 1890451E+03 
.70000(lOE+01 .3999695E+Ol .3051264£-03 

GKl\PHIC~L ILLUSTRATION OF THE 50LUTIOI~ 
SCPl.E I Omm = L.J SC.:.t.E 1.0: 1.0 

Flg. 2: Optimization session with CAMOS for spring design 
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~EI&lillN6 COEfFICIEIHS 
.1000 .1000 .1000 .7000 

~A,cE Of I OBJECIJI'E FUIICTIOiI = .75b1983E'01 
mu, OF Z OmCTlVE fUNCTION = .1520903E'01 
VALUE Of 3 OBJECT IVE FUNCTION = • 34(tOOO(tE +02 
VALUE Of 4 OBJECTIVE fUNCTION = .I019552E'00 
VECTOR Of DECISION YARIABLES 

.0019770[-01 .1079552E.OO .I097939E-02 .3400000E.02 
~ALUES OF INEQUALITY CONSTRAINTS 

.5197700[-02 .2044830E-02 .277574IE-OI .97939m-04 

.2440721E.OO • OOOOOOOE '00 • 3400000E +O? .1127952E tOb 
• 2841598E +03 .2910910E'05 .7739929E'01 .1847299E+02 

GfW'HICAL ILLUSTRATION OF THE 50LUT IOI~ 

:!o .... . 
~RICT ION J;:ioAl.l=(II1I 

WEIGHlIN6 COEFFICIENTS 
.1000 .1000 .7000 .1000 

VALUE Of I OBJECTIVE fUNCTION = .1I00462E.02 
YALUE OF 2 OBJECTIVE FUNCTION = • I 790035E+01 
VALUE OF 3 OBJECTIVE FUNCTION = .3100000E+02 
VALUE OF 4 OBJECTIYE FUNCTION = .1085872E'00 
VECTOR OF DECISION VARIABLES 

.b077404E-01 .1085872[+00 
YALUES OF INEQUALITY CONSTRAINTS 

• 5774042E-02 .1412836E-02 
.2285413E.00 .3000000E+01 
.2700856E'02 .3201980E+05 

.1733085£ -02 

.2781312E-01 

.3100000E+02 
• 7724399E+01 

.31 QOOOOE +02 

.7330849[-03 

.1135182E+06 

.!820391E+02 

GRAPHICAL IL~USTRATION OF THE SOLUTI OI~ 

" .. 
I="R ICTtON oAl~g 

Fig. 3: Optimization session with CAMOS for multiple clutch brake 
design 
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3.3. Optimal design of helical gearsets 

Optimization model 

Vector of design variables is x 

x width of the gear rim 
1 

x diameter of the input shaft 
2 

x diameter of 
3 

the output shaft 

x number of teeth .. of the pinion 

x modules of the gear weels 
5 

Vector of objective functions is 

volume of the gear set 

distance between the axes 

width of the gear rim 

Optimization results 

weel 

f(x) 

where: 

For this problem an optimal solution generated by CAMOS 1S presented 
in Fig. 4. 

100 [/11M] : 

WEliiHTlh6 COEFF ICIEIITS 
• ~ \};I!} • ~Ull li • bt.HJ~ 

STA~TII;& f'OIlIT (HOSEN BY TH~ srSlEn fOR SW:IUG HiE Off IMun 
. :SC,6[ .O~ .51b14 ~E ·u2 . b,m~E·02 

','ALUE OF 1 OUEC!lI'[ FUr:CIIOI: : . ( m~m t Vb 

VALUE Of j O~JECl I';£ fUI/CHOl1 : • 270~('OOE t05 
\'AL U£ Of ;, OeEI!VE fUlle r JON : • ~5v~~ 9 0E +02 
~EC iOf: Of ~ECISJ ON \'A~ I A~LES 

. 1~um~E'02 .35 11419E.u2 • b31S0SJ[ '02 .1bOOUOOt t01 
• SIl('O\l~('E to 1 

\' I.LUE) Of iIj£ QUALI II (01;5 , I<~ IIl1S 
. 1 ~:.5~B~t t u~ .160106:£ .03 .431~917E · O I . 1&7bl,)SE t02 
.19~S;mt02 . 2m4~SE 'O I ,9:.S293H1l .l iln171 E-02 
.8:eaSSIE tOl .m219IE·O~ . 9191754[-02 • 4990808E .\11 
.~SI14 1 9Et('2 .6378087E '02 

Fig. 4: Solution of a gearset optimization problem 

3.4. Optimal design of hydrostatic bearings 

Optimization model for journal bearines 

Vector of design var1ables is x = [Xi' ... ' XplT where: 

X orifice diameter 
1 

x supply pressure of the fluid 
2 

x angle of the circumferential land length 
3 

X .. angle of the circumferential pocket length 
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x depth of the pocket 
!:i 

x 
cS 

axial pocket land length 

x radial clearance 
7 

Xo length of the bearing 

X9 diameter of the bearing 

Vector of objective functions is :f(x) = [f (x), f (X»)T where: 
i 2 

total power loss in the bearing 

size of the bearing 

Opti~ization results 

For this problem an axample of the optimal solution obtained on the 
plotter as the output of CAMOS is presented in Fig. 5. 

1(1)· 0.0621 

f(2)- 28593.6 

Cp - 160.0 

IkW) 
Imm2 ) 

IN/~m) 

p- 0.80 

d' 0.15 

IMP.) 

Imm) 

-

n 

t--._+._._-
'"""' 

~ -
95.9 

Fig. 5: Computer graphic output for an optimal solution 
bearing 

o ri 
~ M _._._._._ 

... ... 

111 )- 0.0889 IkW) p' 0.36 IMP.) 
112)= 8841.3 Imm') d= 0.39 Imm) 
Cp • 110.0 IN/~m) 

Fig. 6: Computer graphic output for an optimal solution 
bearing 

journal 

thrust 
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Similar model IS created for hydrostatic thrust bearings for which an 
axample of final solution obtained on plotter is presented in Fig. 6. 
More detailed description of these problems is given in [6]. 

4. Final Remarks 

The software package CAMOS is a user - friendly program which makes 
it useful for designer of various backgrounds. While running the 
program the designer is asked to provide only the basic informatIon. 
Following the results. he obtains all the necessary information which 
enables him to make the right decision in design problems with 
conflicting criteria. 

Each of the optimization problem introduced to CAMOS is prepared in 
a general. computer aided design form which as a module is attached to 
the system. The computer library of such modules IS created and under 
development. This makes the design of any of the presented problems 
very easy and the whole design process is just a short session with 
a computer. 
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ABSTRACT 

DYNAMIC STRUCTURAL OPTIMISATION BY MEANS 
OF THE U.A. MODEL UPDATING TECHNIQUE 

ir. S.Lammens ., dr. ir. W.Heylen, prof. dr. ir. P.Sas •• 

K.U.Leuven, Mechanische Konstruktie en Produktie 
Celestijnenlaan 300 B, B-3030 Heverlee, Belgium 

In recent years several methods have been developed for updating fmite element models with 
regard to their dynamic characteristics, by means of experimentally obtained vibration information. Many 
techniques use modal characteristics (resonance frequencies, damping factors, modal displacements, ... ) 
for tuning physical parameters of the model (elasticity moduli, mass density, plate thicknesses, cross 
sectional characteristics, ... ) in order to obtain a fmite element model which shows the same dynamic 
features as the real structure. One of those techniques is the U.A. Model Updating Technique. 

Since this technique not only uses physically interpretable model parameters to be modified, but 
also allows an easy selection and/or weighting of those parameters and of the dynamic characteristics to 
be matched, it is also applicable to dynamic structural optimization. If used as such, the desired vibration 
parameters serve as a goal for the structural optimization procedure. The algorithm will determine 
modifications of the structure, within the imposed boundary conditions, that will match this desired 
dynamic behaviour. 

An example will illustrate this process. 

1. INTRODUCTION 

Today, modem mechanical constructions must fulfill a broad variety of goals on one hind, but on 
the other hand several constraints are imposed on the practical design concept. Typical technical goals 
can be weight minimisation, stress concentration minimisation, life time maximisation, etc. In order to 
describe the complex relationship between design parameters and goals, analytical models, especially 
finite elcment models, are used. Due to incorrect modeling, geometrical oversimplification and 
uncertainties on the finite element input data, perfect correlation between reality ("known" by 
measurements) and the analytical model is seldom found. The use of model updating procedures allows 
the designer to tune the analytical model in order to yield minimum differences between the experimental 
and analytical characteristics. The result is that more confidence can be given to further use of the 
analytical model, e.g. for structural optimisation calculations. 

A procedure for updating dynamic fInite element models (UA-model updating - User Acceptance) 
has recently been developed at K.U. Leuven. This UA-procedure formulates the problem as a 
minimisation problem, being approached with a non linear programming algoritlun (ref. 1). 

While updating tries to tune the dynamic characteristics of a fmite element model to the 
experimentally obtained modal parameters, dynamic structural optimisation aimes at tuning the dynamic 
characteristics of a structure to values imposed by practical considerations. It is obvious that basically 
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both problems lead to the similar fonnulations. The UA-model updating techniques can easily be adapted 
for solving structural optimisation problems. 

After a short overview of the UA-modelupdating technique and its adaption to structural 
optimisation, this paper presents an elaborate example of model updating and structural optimisation. 

2. UA-UPDATING AND STRUCTURAL OPTIMISATION 

The UA-updating procedure uses as updating parameters the material and element properties of 
the [mite element model. Such parameters .are Young's modulus, mass density, cross sections, moments 
of inertia, etc. The user has to define the set of parameters (Pk, k=l,r) together with weighing factors wk 
expressing the confidence of the user in the actual value of the parameters Pk (wk",l: Pk is assumed to be 
quasi correct; Wk"'O: Pk is assumed to be totally wrong). The procedure uses 3 criteria to change these 
parameters in order to obtain a better correlation between experinlental results and finite element 
calculations: 

a) Analytical eigenfrequencies should converge to the experinlental frequencies. The frequency shifts due 
to changes of the updating parameters are predicted using the sensitivities of the eigenfrequencies with 
respect to selected parameter changes. The sensitivity coefficients are combined in a set of s linear 
equations for obtaining frequency correlation. This first order Taylor expansion can be written explicitly: 

with: 

r ofi,a 
L (--) tJ.Pk = f· - f. ~ I,e I,a 

k=l aPk 
i=l,s 

r: number of selected updating parameters 
s: number of frequency correlation requirements 
Pk: kth selected updating parameter 
tJ.Pk: unknown parameter change for updating parameter k 
fi,a: ilh :malytical eigenfrequency 
fi,e: ith experimental resonance frequency 

(1) 

b) TIle experimentalmodeshapes should be orthogonal to each other when wheighed with the analytical 
mass- :U1d stiffnessmatrix. Due to the expected measurement and curve fitting errors on the modal 
vectors, perfect orthogonality is not required, but reduction of impo11:U1t off diagonal onhogonality 
matrix clements to a sufficiently low level is attempted. Acceptable levels of off diagonal onhogonality 
matrix elements arc of the order of 10% when compared with corresponding main diagonal clements. 
These requirements are combined into two sets of linear equations: 

I r 
amOij 

) tJ.Pk + mOij I S u M L( 
k=l apk 

(2) 

L ( 
okoij 

) foPk + kOij I ::; ~ 
k=1 OPk 

(3) 
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{ 'l'i,exp J: nonnalized and expanded experimental mode vector i. These mode 
vectors are scaled to unity modal mass for computation of mOij and to 
unity modal stiffness for computation of koij. 

aM: maximum value for off diagonal elements of the mass 
orthogonality matrix (aM = 0.1 typically) 

aK: maximum value for off diagonal elements of the mass 
orthogonality matrix (aK = 0.1 typically) 

c) The iteration parameters must not exceed lower and upper bounds in order to restrict the updated 
models to the space of "user defined" acceptable models. Mathematically, this can be expressed by a set 
of linear constraints: 

k=I,r lk: lower bound on variable Pk 
Uk: upper bound on variable Pk 

(4) 

Although the set of equations (1), (2) and (3) can be solved with a least square approxinlation, 
nonnally a non linear programming approach is used. TIle objective function that is used is: 

(5) 

with: 

Xk = wk 6Pk/Pk' weighted relative parameter change 

f dfn,a Pk M dl110ij Pk K dkoij Pk 

a,lk = dPk wk fn,e aijk = dpk ~ aijk = dpk wk 

The last tenn in (5) is a penalisation of parameter changes. Constraints (4) still remain valid. This 
minimisation problem with constraints can be solved with standard algoritluns. TIle weighing factors (W c, 
W Ko' W Mo' W n' W m' W p) are defined and optimised in a control strategy that ensures the stability of the 
global iteration proces. More details can be found in (ref. 1). 

The equations and algoritluns for structural optimisation are exactly the same. The parameter 
selection with weighting factors is identical. This selection expresses which material or element 
properties may change while tuning the selected eigenfrequencies fi,a of the finite element model to the 
frequencies fi,e which are defined by the user. In structural optimisation however equations (2) and (3) are 
not used. There are no orthogonality constraints. Only equations (1) and (4) will be used. 

The only difference with the updating procedure is that during the iterations of the optimisation 
the eigenfrequencies fj,a of the ftnite element model that are not selected to be tuned to a fixed frequency, 
arc checked if they do not violate following user specifted constraints: 

(6) 
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fIn and fun are the lower and upper bound of regions where no resonance frequencies of the structure are 
allowed. If ~,a violates the constraints (6) then ~ .• becomes part of the set of selected eigenfrequencies fi,a 
and gets as targetvalue ~,e: 

fj,e = flo - 0.75 Hz or fj,e = fun + 0.75 Hz 

The objective function for the non-linear programming approach becomes: 

s r f 2 r 2 
W f 1: W n ( 1: aok xk - 1 + fo affn e) + Wp 1: xk 

n=1 k=l "k=1 

with: 

xk = wk ~PkII'Ic, weighted relative parameter change 

f ofn,a Pk 
~=-

OPk wk fn,e 

constrained by equations (4) and (6). 

3. ELABORATE EXAMPLE 

(7) 

The subject of tItis example was an aluminium tennisracket. The goal of the optimisation 
calculations was to tune the first 2 resonance frequencies to 120 Hz and 190 Hz and to avoid resonance 
frequencies in tile range between 340 Hz and 370 Hz. 

First a simplified finite element model of the racket was developed and the dynamic 
characteristics were calculated. An experintental modal analysis test was perfomled. Next the fmite 
element model was updated for the frequency range of interest using tile UA-updating procedure. WitII 
tile updated model the structural optimisation calculation was performed. Finally the results of this 
optimisation were verified on the real structure. 

3.1. Finite Element Model 

Figure 1 gives a simplified view of tile geometry of the structure. A 219 dof beam model was 
developed. Only the connection between handgrip and frame was modeled with shell elements. The 
honeycomb structure that fills the beams of the frame and the handgrip (figure 1, cross section B-B) was 
not taken in account in the defmition of the element properties (cross sectional area and 2nd moments of 
area). This error had to be corrected by the updating procedure. 

3.2. Experimental results 

An experimental modal analysis test was performed. The racket was free-free suspended and was 
excited with a hammer in point 12 (figure 2) in the z-direction. In each point the 3 translational dofs were 
measlJred. For the estinlation of the modal parameters a multiple degree of freedom technique was used. 
The resonance frequencies and damping values were detemtined with a least squares time domain 
paranleter estimation technique. The corresponding modeshapes were identified by means of a least 
squaresfrequency domain parameter estimation technique. 
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3.3. Modelupdatine 

Table 1 gives the analytical and _experimental frequencies and the frequency differences; the 
correlation between the corresponding modeshapes is quantified by the modal assurance criterion (MAC
value). The 4th analytical modeshape. a compression of the racket. was not identified in the measurement 

test. Probably this modeshape was not excited by the input impulse in the z;-direction (figure 2). The 
analytical frequencies are systematically too high. This indicates a global underestimation of mass or a 
global overestimation of stiffness. As already mentioned. the honeycomb structure (figure I. cross section 
B-B) was neglected in the finite element model. It is expected that this neglect causes the mass and the 
stiffness of the racket to be underestimated by the finite element model. The MAC-values are acceptable. 

The first step of the updating procedure is the selection of the updating parameters. The racket 
was divided in 5 subdomains (figure 3). These subdomains are parts of the racket that have homogeneous 
material and element properties. Some of this properties were selected as updating parameters. Some 
smaller updating cases that were performed. showed that the most effective set of updating parameters 
was the following set: 

subdomain 1: P. Ax. Iy.lz; 
subdomain 2: p. Ax. Ix, Iy. Iz 
subdomain 3: P. Ax. Ix. Iy. Iz 
subdomain 4: p 
subdomain 5: p 

p: mass density 
Ax: cross sectional area 
Ix: 2nd moment of area in torsion 
Iy: 2nd moment of area about the y-axis (bending) 
Iz: 2nd moment of area about the z-axis (bending) 

Nonllally the whole structure should have a uniform mass density. In tlus case however, changes 
of thc mass density were necessary to correct for the neglect of the mass of the honeycumb structure. As a 
consequence no uniform mass density was required. All updating parameters got the same weighting 
factor, because there was no reason to assume that one parameter was more accurate than an other one. 4 
iterations were considered. 

Because of noise on th<; measurement data it is useless to require perfect matching of the 
experimental and the analytical model. Frequency differences up to 3% are considered acceptable. Table 
2 shows the updated frequencies. the frequency differences and the MAC-values after each iterlttion. TIle 
results after 2nd iteration are the best. The fust 3 frequency differences are less then 3% and all MAC
values are acceptable. After the 2nd iteration tile process begins to diverge. 

Figure 4 shows the variations of the updating parameters after the 2nd iteration in percent of their 
original value. The values of p and Ax have increased. especially in subdomains 2 and 3. The values of 
lx, Iy and lz have decreased. Since the original frequencies were too high. it is nonnal that the stiffness 
parameters have decreased, but considering the presence of the honeycumb structure an increase of the 
stiffncss parameters with respect to the original model was-expected. Apparantly neglecting the 
honeycumb structure was not the only important error in the simplified, original finite element model; the 
estimates for bending stiffness Iy and Iz were too high. 

The updated model was used as a base for the structural optinUsation calculation. 

3.4. Structural Optimisation 

As already mentioned above the goals of the optimisation procedure were to tune the first 2 
frequencies to 120 Hz and 190 Hz and to avoid resonance frequencies in the range between 340 Hz and 

370 Hz. 
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To allow a verification of the result by measurements on the existing structure, one had to choose 
optimisation parameters that were easy to apply. Therefore only the mass density of a few parts of the 
structure (figure 5) were chosen as optimisation parameters, because it is easy to add mass to that 
elements on the existing structure. 

10 iterations were asked. Table 3 shows the variations of the resonance frequencies during the 
updating process. After the 9th iteration the requirements are perfectly fulfilled. however it makes no use 
to ask for such an accurate result. The fmite element model is not a perfect model of tlle real structure. 
Frequency shifts up to 5% can be expected. 

Notice that after the 2nd iteration the 3th frequency is in the range between 340 Hz and 370 Hz. 
The UA-procedure automat.ically corrects this violation ofthe constraints. 

Figure 6 shows how the optimisation parameters change during the optimisation procedure. After 

the conversion of these mass densities to masses of the elements following results are found: 

subdomain 8: add 37.1 g 
subdomain 9: add 0 g 
subdomain 10: add 0.9 g 
subdomain 11: add 2.5 g 

3.5. Verificatioll of the Results 

This results were applied on the real structure. A new experintental modal analysis test was 
perfoffiled. This test yielded following results for the first 4 resonance frequencies: 126 Hz, 194 Hz, 
373 Hz and 47THz. 

The frequency differences between calculated and measured frequencies are less than 5%. 
Considering the simplified finite element model and the low number of optimisation parameters that were 
used, these results are very good. 

4. CONCLUSION 

The first part of the paper discusses the adoption of the UA-model updating strategy to structural 

optimisation calculations. The second part proves,on the basis of a practical example, the validity of the 

UA strategy for structural optimisation calculations. 

[lJ T. Janter, "Construction oriented updating of dynamic fmite element models using experimental 
modal data.", PhD dissertation 8901, K.U. Leuven, Feb. 1989. 
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OPTIMAL I-SECTION OF AN ELASTIC ARCH 
UNDER STABILITY CONSTRAINTS 

Bogdan Bochenek and Michal Zyczkowski 

Institute o£ Mechanics and Machine Design. 
Technical University o£ Cracow. 

Warszawska 24. 31-155 Krak6w. POLAND. 

1. INTRODUCTORY REMARKS. 

Although problems o£ optimal design o£ arches against 

buckling have been investigated £01' almost :forty years and 

numerous solutions to the problem exist (c.:f. Gajewski and 

Zyczkowski. 1988) there are still subjects open :for discussion. 

One o:f them. that is very important :from a practical point o:f 

view. is optimization o£ thin-walled arches. It can be proved 

that in many cases even prismatic thin-walled (I- or 

box-section) arches are much more e:f:ficient than solid ones 

wi th opti mal mass distribution. On the other hand. :for 

thin-walled structures the stability analysis is more 

complicated and. in particular. the consideration o:f local 

stability is required. Probably the only papers dealing with 

such problems are due to Bochenek (1988) and Mikulski (1988). 

The £irst one considers the problem o:f parametrical and 

variational optimal design o£ box-section arches with respect 

to overall and local stability. whereas the second paper 

pI' esents some sol uti ons concer ni ng opti mi za ti on o:f ar ches wi th 

variable I-sections. Mikulski does not consider local stability 

constr ai nts. 

2. OUT-OF-PLANE BUCKLING OF AN I-SECTION ARCH. 

We consider a plane elastic circular I-section arch which 

* is loaded by a uni:formly distributed radial pressure p o£ 

Eulerian behaviour aftter buckling (direction constant in 

space). The arch axis is assumed to be inextensible whereby the 
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prebuckling state is momentless. so that only the axial force 

* * * N = -p R differs from zero before buckling. Wi th a view to 
zO 

describe the critical state of the arch. the extended version 

of the equations previously used for solid cross-section (e.g. 

Bochenek and Gajewski. 1989) is derived. The extension is due 

to introduction of the moment of restrained torsion 
• ,,, I' • 

= Dw (y - ~ /R ) (D 

and the bimoment 

B* (2) 

along with the definition of the variable twist as 

* * T = Y - OI/R (3) 

Hel-e ~ and y 

the arch, and 

are the angles of rotation, R* is the l-adius of 

* Dw is the l-estrained torsion rigidity. Moreover. 

the effect of the prebuckling compression implies the following 

modified formula for torsional rigidity (Vlasov, 1959) : 

* * * * * R* * C = C ( B + B ) P / ( E A ) (4) 
s x y 

* B* * In (4) C is the free torsion rigidi ty, and B are the 
s x y 

flexural ri gidi ti es. and A* is the cr oss -sec ti onal area. The 

cross-sectional area A* for the given volume V* and the length 

* of the arch 1 equals 

V* / 1 * (5) 

However. for the reasons of numerical convenience we treat (5) 

as an inequality constraint 

A* .:S V* / 1* A* 
o 

* though it is expected that the opti mal A is equal 

(constraint is active). 

(6) 

to A* 
o 

The out-of-plane buckling is the only form of overall loss 

of stability which needs to be considered for the I-section 

arch, because the cross-sectional torsional rigidity is small. 

After some rearrangements. the set of eight first order 

differential equations governing the critical state of the arch 

(assuming fixed load direction in the COUl-se of buckling) takes 

the form 
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v = -<J( 01 = M /8 £: Y 
" " 

+ M K Z M (7) Y T £: 01 = - £: 01 P £: 
" z 

M = £: M K = 0 
z " 

T -2 £:zRz 8/D 8 M C T 
<..) z 

where 

C = C /1/1 ( 8 +8 ) p/( 12 iii R2 ) . (8) .. " y 

All quantities, namely the displacement v, the angles of 

rotation 01 and y, the twist T, and the increments of the 

internal forces, i.e., bending moment M,,' total twisting moment 

M • shear force K. and bimoment 8 are dimensionless and defined 
z 

with reference to the coordinate axes, that are normal, 

binormal and tangent to the undeformed axis of the arch. The 

definitions of these variables 
* * * ... K* 1"'2/8'" v = v /1 . T = T /1 . K = 

0 

M* * * * M = 1 /8 . 8 = 8 /8 
z z 0 

dimensionless global critical loading 

* *a * Pg = P R /80 

. M = M * 
" " * 

0 

and the dimensionless geometrical characteristics 

... ... ... ... * ... 
8 = 8 /8 • 8 = 8 /8 • C = C /8 ,C 

" K 0 Y Y 0 0 9 

D ··Z'" • * • '" D 1 /8 ,iii = A /A • 1/1 = 8 /C • R 
o 000 

* ... = C /8 
9 0 

... r-.-
R /-( A • 

o 

1 '" * /8 
0 

(9) 

(10) 

(11) 

* ... £: = 1 /R 

are now introduced with dimensional quanti ties marked with 

• asterisks. The quantity 8 0 of the dimension of bending rigidity 
* *2 is defined by 8 0 E Ao /12 . 

We consider an arch with clamped ends. and the boundary 

conditions for the state equations (7) are taken to be 

OI( 0) =y( 0) =v( 0) =T( 0) =OI( 1 /2) =Mz ( 1 /2) =K( 1 /2) =T( 1 /2) = 0 (12) 

These condi tions are set up for s=O and s=1/2 owing to the 

symmetry of the structure in the prebuckling state and with a 

view to identify the symmetric form of out-of-plane buckling. 

which is known to be the critical global buckling mode for an 

arch of the type considered. The independent variable s is 
* ... defined as s /1 , and is measured along arch axis. 
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Aft.er int.roducing t.he dimensionless cross-sect.i onal 

dimensions 

• r-.- • r-.- • r-.- • r-.-
b = b /y A • t. = t /y A • h = h /y A • t = t /y A 

011 0 022 0 
(13) 

where b. t • 
1 

h. tare 
2 

flange wi dt.h • flange t.hickness. web 

depth, web thickness respectively. the geometrical 

charact.eristics for t.he considered I-sect.ion may be present.ed 

in t.he form 

C14) 

3. LOCAL INSTABILITY. 

For an arch wit.h I-sect.ion, loss of stabilit.y of t.he web or 

flange may occur in addit.ion to overall buckling. Approximate 

values of t.he crit.ical loads associated wit.h t.hese local 

inst.abilit.ies may be calculated using t.he following simple 

models. With a view to describe loss of stabilit.y of the web, 

the "column model" (Fig.l) is introduced. The critical load 

value for the case of load application in centre of the 

cross-section is given by (Timoshenko,1936) 

• - *3 *2 P = X E t /(12h ) 
'" 2 2 

or for dimensionless quant.it.ies 

p = X t 3 /h2 

'" 2 2 

x = 18.7 
2 

(16) 

(16) 

Wit.h a view t.o obt.ain more apropriate formula for web buckling 

load t.he "annular plat.e model" could be used but at the cost of 

much more complex stabilit.y analysis. 

~ I _._ 

l P;' - . --·1 
~~. 

~.--' 
I 

I 

FIG. 1 

1 
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For lhe f'lange inslabilily we adopl lhe "shell model" 

indicaled in Fig.2, and lhe crilical load may lhen be 

ealculaled using an expression proposed by Hayashi (1971): 

or 

Relalive lo lhe original expression, 

lhe f'lange (supporled-f'ree shell) 

x = 
1 

X = 
1 

we 

by 

4.2 (17) 

3- R2 X1 
(18) 

have replaced half' of' 

lhe f'our limes longer 

supporled-supporled shell. This assumption is based on lhe f'aet 

thal lhere is a similar def'leclion dislribution f'or a 

cantilever and a clamped-clamped beam (loaded by unif'orm load) 

if' lhe clamped-clamped beam lenglh is f'our times lhe length of' 

lhe canlilever. 

FIG.2. 

4. THE OPTIMAL DESIGN PROBLEM. 

The optimization problem is lo delermine the values of' the 

arch cross-seclion dimensions so as to maximize the smallesl 

crilieal load from among lhe three instability loads considered 
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max mi n ( p g' P f' P.., ) (19) 

subject to 

2bt + ht ~ 1 (20) 
~ 2 

The total volume of' the arch and its length and radius. are 

considered to be given. Adopting the so-called bound 

formulation of a max-min problem. see e.g .• Olhoff (1988). the 

problem stated above can be transf'ormed into f'ollowing 

min A 

subject to 

l/p A ~ 0 
9 

l/p - A ~ 0 • .., 
l/Pf - A ~ 0 

2bt + ht ~ 1 
1 2 

(21) 

(22) 

wher e a par ameter A. whi ch pI ays the r 01 e of' an addi ti onal 

design variable. is introduced. 

5. ALTERNATIVE FORMULATION OF THE OPTIMIZATION PROBLEM. 

In the case where the cross-section dimensions are taken to 

be design variables and where optimization is performed with 

respect to only one type of' overall buckling mode. we can 

assume that the constraints (22) will be active throughout in 

the optimal solution. This will assure that there are no 

singularities (like. e.g .• h tending to inf'inity and t2 tending 

to zero) in the optimal solution. With this in mind. we have 

also considered the f'ollowing modif'ied (al ternati ve) 

i'ormul ati on of' the current problem: 

max Pg (23) 

subject to 

2bt +ht ~ 1 P - Pf 
::: 0 . p - P.., = 0 

1 2 9 9 
(24) 

In comparison with the original problem (19.20) or (21.22). the 

new one both contains inequality and equality constraints and 

theref'ore requires a slightly diff'erent numerical treatment. 

6. THE NUMERICAL METHOD. 

In order to sQlve the mathematical programming problems 

f'ormulated above. a numerical method based on the so-called 

Method of Moving Asymptotes (MMA) is applied. This method 
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applies ~o inequali~y cons~rained ma~hema~ical programming 

problems and is clearly described in ~he paper by Svanberg 

(1987), so de~ails will be omi~~ed ~or reasons o~ brevi~y. Here 

we only need ~o explain how ~he MMA me~hod has been adop~ed ~or 

~he problem wi~h equali~y cons~rain~s. The possible me~hod o~ 

dealing wi~h equali~y cons~rain~s is ~o ~rea~ them as a set 

o~, in gener aI, nonl i near equa ~i ons. Sol vi ng thi s set we can 

reduce ~he total number o~ design variables and then per~orm 

minimization wi~h respec~ to remaining variables and subject to 

only inequali~y constraints. 

7. RESULTS. 

Numerical results have been obtained lor both optimal 

design ~ormulations, and as expected ~or the problem (21,22) 

all cons~raints become active a~ the optimum. so that solu~ions 

i'or both problem :formula~ions become identical. Figure 3 shows 

the optimal solut.ion for arch steepness parame~ers e=rr The 

distance bet.ween the ends o~ the arch was chosen t.o be 1m and 

the total volume 10-~m3. The ~ransverse dimensions are in the 

~igure mul~iplied by ~ive. 

THE OPTIMAL SOLUTION 
a- 11' 

R- 198 

FIG.3 

b -7.49 
t,=O.0456 
h -12.1 
t.-O.0263 
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To check t-he validit-y of our assumpt-ion, we comput-ed a 

post-eriori t-he crit-ical loads associat-ed wit-h in-plane buckling 

of t-he opt-imized arches, and found t-hat- t-hey are more t-han t-en 

t-imes higher t-han t-he considered out--of-plane ones. This 

confirms t-hal out--of-plane buckling is t-he only lype of global 

inst-abilit-y t-hat- needs t-o be considered for analysed I-seclion 

arches. Thereby necessily of mullimodalily which has been 

proved for solid rect-angular cross-seclion (Bochenek and 

Gajewski, 19S9) is here unlikely irrespeclive of lhe arch 

sleepness paramet-er. 
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Abstract: Substructure Techniques are applied to the modelling or clasto-mechanical systems. The aim 
is the generation of simple mathematical models for the dynamic analysis of the complex system. This 

paper shows how complex systems can be modelled by means of simple lumped-mass-substruetures. For 

the single substructures simple yet highly accurate adapted models are to be generated in an optimi

zation process. In order to solve this vector optimization problem. a hierarchical optimization procedure 
is developed. The model adaptation and substructure synthesis of a tree structure is presented as an 

example. 

1. SYSTEM MODELLING BY MEANS OF SUBSTRUCTURE SYNTHESIS 

The modelling of complex dynamic systems is carried out using methods of the sub
structure analysis and synthesis. This procedure is characterized by a separation of the 
complex system into substructures in order to generate substantially reduced mathe
matical substructure models from which the global equations of motion of the complex 
system can be reconstructed. The papers of GREIF/WU [1] and GREIF [2] provide a 
comprehensive review of the mathematical modelling concept of the "Component Mode 
Synthesis" in its various forms. The procedures differ in the consideration of coupling 
points between the single substructures at the model synthesis to the mathematical 
complex model. 
Here, a concept is to be introduced which uses very simple but dynamically precise 
lumped-mass-models for the substructures on the basis of the physical modelling. 
After joining them at the coupling points, these physical substructure models form a 
simple, substantially condensed physical complex model to which the conventional 
analysis methods of system dynamics can be applied. 
An important advantage of this generation procedure of a simple physical substitute 
system is the realistic modelling. In the engineering design process the following ad
vantages are achieved for specific problems: 

- Simple, easily presentable physical interpretation of the system dynamics (e.g. 
computer animation); 

- Clear, easily realizable and flexible consideration of system variations: 
- Changing of parameters in partial structures, 
- change of the geometry of the system, 
- variation of links, 
- manageable system description and numerical simulation in mini-computer 

systems (e.g. task of the controller synthesis). 
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In order to reach this goal, the development of a physical modelling strategy using 
mathematical programming procedures was necessary. Hereby, the substantially con
densed substructure models have to adopt those physical properties of the real sub
systems which gain important physical influence in the substructure synthesis. 
For that reason, this concept enables the system adaptation to experimentally achieved 
or desil-ed dynamic properties. The expression adapted model is introduced for the 
modelling for a' substructure. In order to realize the model adaptation, structural opti
mization procedures are used. The substructure synthesis is presented successfully for 
tree structures. 

2. A SUBSTRUCTURE ELEMENT AS AN ADAPTED MODEL 

The adapted model is a highly condensed substitute system for complex elasto-mechan
ical systems which, at the same time, has to fulfill special demands on accuracy [31. 
It is realized as a simple physical substitute system which is build of beam elements 
and concentrated point masses. An adaptation process transfers chosen properties of 
the real system into the adapted model, the latter being a highly flexible tool for the 
detailed analysis in the succeeding numerical simulation. 
The choice of the properties of the real system which are to be adapted depends on 
the simulation objective which the adapted model is generated for. Table 1 shows a 
compilation of the dynamic properties of an adapted model as a lumped-mass-system. 
The mass-geometric properties are of fundamental importance: Total mass, position 
of the centre of mass, elements of the inertia tensor. The correct reproduction of 
these parameters in the adapted model determines the correct behaviour of the rigid
body motion and the realistic values of the stress resultants or of the output in control 
systems. 

cilledan Lumped-Mass-Syslem influence on 
with p points 01 mass dynamics 

l. Mass-geometric properties 
p 

rigid· body lolal mass M· ~ m, ,-, mollon. 
cenlIe of los • [rx • 'v. rz]T 

global 
mass forces and 

[ ·xx Oxv 
Oxz 1 moments 

inertia • • 9 xy Byv ·v' In Ihe 
tensor -5 syslem Ox. Byz Oz. 

2. Elaslo·slallc properlles 

deformallon I • K-' f condilions 

behaviour II' K·'diag[m' ..... mpJwfgJ 
lor correct 
eigenmodes 

3. Modal properlies 

Eigen- wJ. J.I ..... k 
frequencies correct 

£igenmode ~J • j ·I, .... k eigenmodes 

linear PJ' f m,wJqj. J·I ..... k cCHec! slress 
momentum ,-r resullanls in 

angular p synthesis 
LOJ • ~ 10' • PI • J. I ..... k problems 

momentum ,-, 
klnellc TI • wJ2g{ dlag[m' ..... mpJql vlbrallon 
energy energy 01 

j.I ..... k Ihe syslem 

Table 1: Dynamic properties of the adapted model as a lumped-mass-system 
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The modal properties are the second important area of adaptation for the adapted 
model. It can be observed that a substructure synthesis from adapted models which 
fulfill the adaptation conditions of the eigenfrequencies and eigenmodes only does not 
achieve a considerably precise model of the complex system. The conformity of the 
vectors of linear and angular momentum of the substructure model and of the original 
substructure in the state of the investigated eigenvibrations is a demand which gains 
a highly important influence on the result. 
The task of the model adaptation, i.e. the reconstruction of the mass and stiffness 
matrices with the given spectral data of the system, has been dealt with in the liter
ature in various ways: by means of matrix-oriented procedures of inverse eigenvalue 
problems [4], [5], or by means of modal perturbation methods in the range of the 
redesign-problem [6]. Both procedures are, for the time being, unable to adapt the 
model to the linear and angular momentum properties of the original. In our case, a 
solution procedure basing upon the minimization of an error functional under application 
of the mathematical programming has been chosen. 

3. GENERATING THE ADAPTED MODEL AS AN OPTIMIZATION PROBLEM: 
THE HIERARCHICAL OPTIMIZATION PROCEDURE 

The adapted model for a substructure is designed as a lumped-mass-model the para
meters of which are combined in the design vector XE IR n: Geometric values, coordinates, 
cross-sectional areas, area moments of inertia and masses. The design variables Xi' 

i = 1, ... , n, have to be chosen in such a way that the lumped-mass-system adopts the 
same dynamic properties as the real system (Table 1). In an adaptation process, this 
is achieved by minimizing the error expressions of the scalar and vectorial dynamic 
propel·ties. The basics of the adapted model are explained in Table 2. 

real system lumped mass model 

~ 
m, - eel.manOj 

" 

• system m,.J,. I· I. .... p 

I parameters 
{Elx.y.Glp)k' k· I ..... p-I 

t 
desclipUon 

design variables 

01 the ~ . [x, ..... xnl T 

comptete leasible range 
system 

X :. (~. R n I ~ I ,~ , ~u) 

model ell Of 0: leal system 
M: model 

scalar I.~ relaUve error 
II(~) • or Ihe para· 

properties PI PP meter PI 

vectorlat IpP· p~1 ralsllv. 

properties PI 
11(11) • 

IpPI 
difference 
vector 

Table 2: The adapted model as a lumped-mass-system 
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The model adaptation can be formulated as a vector optimization problem as in the 
case of structural optimization problems [7], [8]. The adaptation problem can largely 
be solved by the program structure of the 3-columns-concept of the structural opti
mization introduced by ESCHENAUER. Special aspects of the problem then occur in 
the problem-specific area of the so-called optimization model. Table 3 shows the vector 
optimization problem for the model adaptation. 

Table 3 

min {LCx)} 
X·X 

x:- { X· Iln I ~L. • X • ~u } 

fe9.P;?~)2 
1-, lSI I 

f(leP~ef'llt 
1-' lEI I 

f('1P~1f'1lt 
1-, 1b.1 I . 

M: model 
0: leal syslem 

h?II-I~I·1 

Optimization problem for the adaptation process 

A large number of single objective functions, each describing the error for a system 
property between the original and the model, have to be minimized in the vector opti
mization problem of the model adaptation. Differing from structural optimization pro
blems, the formulation of this problem as a scalar optimization problem has to follow 
a new strategy: the hierarchical optimization procedure. 
The hierarchical optimization procedure uses a strategy of simplified preference func
tions p [f(x)]: 

ITt 

p[f(x)] = L wi fi(x) (j) 
i=1 

by setting the weighting factors w = 1 or w = O. By this, the weighting factors act as 
control coefficients. Until the adapted model is achieved, the modelling in the hierar
chical optimization is structured by varying the numbers w in several successsive steps. 
Each step is especially characterized by adding further equality constraints which fix 
the already adapted properties. The hierarchical optimization procedure used for sub
structure modelling is shown in Table 4. 
This procedure requires an optimization algorithm which is able to solve highly non
linear optimization problems and which works in the feasible range in every main iter
ation in order to secure already adapted system properties. Sufficient results were 
achieved with the optimization algorithm QPRLT (Quadratic Programming with Reduced 
Line Search Technique). The Research Laboratory for Applied Structural Optimization 
at the University of Siegen developed this method as a hybrid algorithm from a genera
lized reduced gradient and a sequential quadratic procedure [9]. 
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I Initial design I 
I st optimization step 

adaptation: mass-geometry I w2 • 3 • I 
constraints: mass, bounds w ·0 1.4.5.6, T 

J 
2 nd optimization step 

adaptation: eigenlrequencies I w4 • I 
constraints: mass-geometry, bounds w ·0 I. 2, 3, 5, 6, T 

J 
3 rd optimization step 

adaptation: linear and angel. moment. I w 6, T - I 
constraints: mass-geom., eigenlr .. bounds W1,2,3.4,5· 0 

I final design . adapted substructure model I 

Table 4: Hierarchical optimization procedure for substructure models 

4. EXAMPLE: SUBSTRUCTURE SYNTHESIS FOR A TREE STRUCTURE 

The tree structure in Fig. 1 consists of equal structural elements (Fig. 2) with a rect
angular hollow-section. For the substructure elements acc. to Fig. 2 an adapted lumped
mass-model with 8 point-masses is to be determined which is suitable for the sub
structure synthesis according to Fig. 3. 

Fig. 1: Tree structure Fig, 3: Synthesis structure 

Ij A-A 

A 'B--!-I~ r- .d 
i-

I A I 6~ J 1000 

a) real system b) lumped-mass-model 
Fig. 2: Substructure element 
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The substructure model has 28 design variables: 

x = [Xl" ., X 28 ]T 

Xl ••. Xs 

X6 ••• X 13 
X l4 .•. X 28 

coordinates, 
mass points, 
area moments of inertia. 

(2) 

The adapted substructure model has to correspond with the original up to the 8 th 

eigenfrequency f 8 = 200,7 Hz. For a successful substructure synthesis, the errors of the 
mass-geometric values, of the first 8 eigenvalues, and of the vectors of linear and 
angular momentum in the state of the first 8 eigenvibrations have to be minimized in 
the adaptation process. In order to solve the vector optimization problem, the hierar
chical optimization procedure according to Table 5 is introduced. 

Table 5: 

I Initial design I , 
1st optimization step 

preference PQf~] • [( 1~1)2+ I (I' ~Jtf ] function Il.~s I X.y.z e IJ 

equality h,C~) 
mM 

constraints 
• I -Ji\15"'" • 0 

~ 
2nd optimization step 

preference 6 .. M 2 
function p[!Sx)]. I(I' ~) 

1"'1 Wi 

mM 
h,e/f) ·1- rna . " - 0 • 

x~ 
hze!)·I·x~s "z,O 

equality 
l\J(X)'I-~-':3'O • 

- yos 
h..ex) 'I.~. '4' 0 

Zos 
constraints M 

hoe!l-1· ~ - 'b' 0 h~x)'I'~-'!l'O • - 9 xx yy 

e) ~z hee~) ·1· ~- '6' 0 h7! ·1-EP"·'7·0. 
zz xy 

~ 
3Jd optimization step 

6 DM26 DM2 
preference p[fex)]. I(IEC.:..ECI) +I(I1:1 '1:1 I) 
function -- I', IEPI I', Ih? 1 

mM ) ~ 
equality 

h.c.~) '1- rna ·,,·0 •...• heC! ·1· -'s'O 
xy 

constraints M M 
hJ/f).I-"ci -'9·0 •...• hlbCJs)·I- .. ~ - '16. 0 

~1 we 

t 
Final design: A dapted Substructure ModeJ 

relative error: ' m,s.a<10·o. '''I 6 < 1O.!l 
'PI. .. 6 < 3·10 .3. 

... :3 
'LI. .. 6 < 3·10-

Hierarchical optimization procedure for the adaptation of the substructure 
model 



www.manaraa.com

273 

The substructure synthesis with the final design of the adapted substructure model 
provides a complex system with minimal dynamic errors compared to the ol"iginal sys
tem. Frequency errors and mode errors are compiled in Table 6. Thereby, three model
ling concepts are compared: 
1) The conventional lumped-mass-systemwith equally distributed point-masses and 

uniform bending stiffness of the beams. 
2) The synthesis structure made of substructure models which have been adapted up 

to the 8 th eigenvibration (f 8 = 200.7 Hz) of the substructure. 
3) Equal to model 2) with an adaptation up to the 6th eigenvibration, f 6 = 81.8 Hz. 

Hereby, the mode error is the value of the difference vector 

(3) 

with 0: original, M: model, and i: number of the mode. In order to determine the vec
tors, 9 points of the complex structure marked in Fig. 4 are taken into consideration. 

Table 6: 
LM: 
AM8: 
AM6: 

moeie Erequene1 error [l:] mode error [l:] 

I r, [Hz] LM AMI AM6 LM AM8 AM6 

1 2.65 0.51 0.01 0.01 0.07 0.02 0.04 

2 3.25 0.75 0.01 0.01 0.28 0,03 0,07 

3 3.63 0,85 0,01 0,02 0,39 0,04 0,06 

4 4.92 1.14 0,02 0,02 0.79 0,08 0,12 

5 5.34 0.80 0.01 0,01 1,37 0.07 0,15 

6 5.83 0.79 0.01 0.01 1,04 0,07 0,15 

7 13,89 0,10 0,05 0,05 1,81 0,19 0,44 

8 15,39 5,49 0,10 0,06 7,99 0.54 2,04 

9 15,83 5,18 0,08 0,06 15,18 0,72 2,33 

10 16,92 1,74 0,04 0,00 23,02 0,88 1,77 

11 18,45 2,38 0,04 0,03 12,18 0,43 2,31 

12 18,65 2,36 0,04 0,04 8,43 0,53 1,49 

13 20,04 2,46 0,02 0,01 6,36 0,62 2,36 

14 22,54 1,20 0,04 0,09 10,35 0,68 1,68 

IS 54,00 2,84 0,03 0,24 7,94 1,22 1,20 

16 59,44 2.98 0,08 0,16 17,78 1,88 5,84 

17 62,45 2.57 0,05 0,07 10,47 2,85 6,31 

18 64,58 0,01 0,05 0,05 20,37 2,08 6,48 

19 68,68 3,52 0.02 0,05 20,15 2,29 7,47 

20 74,55 4,00 0,08 0,09 14,85 2,18 4,89 

21 98,44 3,16 0,09 0,89 8,89 3,43 4,03 

22 128,78 4,21 0,50 3,33 19,24 6,74 13,74 

23 149,00 8,43 0,08 7,28 23,16 15,34 10,62 

24 150,25 7,71 0,02 6,80 69,73 16,74 21,29 

25 156,96 6,31 0,13 5,92 70,88 15,96 14,51 

26 177,02 4,10 0,37 5,61 40,75 15,92 15,64 

27 185,10 5,04 0,09 6,33 78,44 19,35 17,07 

28 192,88 7,46 0,38 7,08 94,14 17,42 15,45 

29 197,43 7,81 0,10 7,02 58,32 9,48 14,04 

30 198,69 7,79 0,14 7,27 ~9.94 10,75 19.23 

Frequency and mode errors of the synthesis structure 
Conventional lumped-mass-system, 
Adaptation of the substructure model up to the 8 th mode, f 8 = 200.7 Hz 
Adaptation of the substructure model up to the 6 th mode, f 6 = 81.8 Hz 
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Fig. 4: 20 th eigenform of the complex structure 

S. CONCLUSION 

o 9 selected points 
for mode error 
calculation 
(see (3) and table 6) 

The application of optimization procedures generates efficient and highly accurate 
adapted models. The connected vector optimization problem is solved by means of a 
hierarchical optimization strategy. If the vectors of linear and angular momentum in the 
state of eigenvibrations are considered, these adapted models are very suitable for the 
substructure synthesis. Speaking in terms of physics, this adaptation means a correct 
reproduction of the inner forces at the coupling points of the synthesis structure in 
the state of eigenvibrations. In the case of tree structures, the frequency error Llf is, 
up to the adaptation frequency value, less than 1%. 
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1. Int.roduct.ory ren=rks 

The survey by Kruzelecki & Zyczkowski (1985) contains nearly 

all papers devoted to the optimal structural design of shells 

up to 1984 (505 references). Recent topics can be found in the 

book by Rozvany (1989). In particular, the eighth chapter of 

the monograph by Gajewski & Zyczkowski (1988) concernes the 

optimal structural 

constraints. Only a 

design 

few 

of 

papers 

shells 

deal 

under stability 

with var i ati onal 

optimization problems, among them one should mention papers by 

Andreev, Mossakovsky & Obodan (1972), Solodovnikov (1974), 

Medvedev (1980,1981), Ryabt.sev (19S3a,b) and Levy & Spillers 

(1989) in which unimodal formulations were considered. 

A possibility of the multimodal optimization of a cylindri

cal shell was observed by Medvedev & Totsky (1984). 

The present paper deal s wi th a si mi I ar probl em. However, a 

more accurate linear boundary value problem is used for the 

calculation of the consecutive eigenvalues up to 20 ones. 

Sensit.ivit.y analysis in conjunction with Pont.ryagin's maximum 

principle and an appropriat.e iterative numerical procedure 

allow t.o improve the shell 

iterations. 

wall thickness in successive 
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2. St.abilit.y of" t.he cylindrical shell 

Assuming t..he moment..less precrit..ical st..at..e 01 t..he uniformly 

radially compressed cyl i ndr i cal shell it..s bi furcat..i onal 

s t..abi 1 it.. Y can be det..er mi ned by t..he 11 neal' boundar y val ue 

problem in t..he form of 

different..ial equat..ions: 

t..he canonical set.. of ordinary 

y~ =A .. Y ., 
~ ~J J 

T 
Y = Cu,v,w,~,M,Q,Z,T) , i =1 .. 8, j =1 .. 8, C2.D 

where: 

A =vn~, 
12 

A =_-_n_~_, 
21 

A 
43 

A 
5:1. 

X 
3 

A 1 
56 

A 
13 

A 
24 

A 
57 

v~X 
2 ---, 

A 

X 
1 

4X 
3 

.5 

P 
+ --, 

~ 

nr/4/ 
4X 

3 

12~ 

¢3 X 

A = 15 

A 
27 

• 

1 

A 
54 

A 

2 3 
-Y) ~ 

A ---, 
4>X 

18 
1 

2~) 
2 2 
~ 

C1-v)¢X3 

2 3 
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For simplicit..y t..he following addit..ional quant..it..ies have been 

i nt..l-oduced: 
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"l)2.p2 2 "l)2.p2 "l)2.p2 
X =1- X =1- n 

X =1+ 
i ~' 2 12 3 -4--' 

C2.3) 

X =1+ 
"l)2.p2 

X =1-
"l)2.p2 

X =1-
"l)4.p4 

4 --r6' 5 12Cl-v2 ) OS 144Cl-v2 ) 

The st.at.e variables u,v and ware diment.ionless displace

ment.s Cin relat.ion t.o t.he lengt.h 1), ~ is t.he slope, M,Q,Z and 

T are auxiliary variables relat.ed t.o generalized st.resses, P is 

t.he dimensionless radial pressure. 

The following paramet.ers have been int.roduced as well: 

h 
o 

"I) = -R--' 
1 

~=~, C2.4) 
"l)3 E 

The buckling mode was assumed to have n wa ves in t.he 

circumferent.ial direct..ion. Therefore, originally part..ial 

different.ial equations were reduced t..o ordinary ones. The 

diment..ionless thickness .p Ct..he cont..rol funct..ion) is assumed t..o 

be a funct..ion of the dimentionless axial coordinat..e x=~/l, 

namely t/>Cx)=hCx)/ho ' where ho=Vmin/2nRl, so as t..o sat..isfy t..he 

const..ant. volume condit..ion: 

i 

I¢CX) dx 1, C2.5) 

o 

for any admissible cont..rol function .p=¢Cx). 

In order t..o dist.inguish t..he symmot..ric and ant..isymmet..ric 

buckling modes in t..he longit.udinal direct.ion x, t..he st..at.e 

equations C2.1) should be complement..ed by suit..able boundary 

condit..ions. In t.he case of simply support..ed edges t..hey are as 

follows: 

vCO)=wCO)=MCO)=TCO)=uCl/2)=~1/2)=CK1/2)=ZC1/2)=0 C2.6) 

for symmet..ric buckling Ceven number 

x-direction), 

m of half-waves in 

vCO) =WCO) =MCO) =TCO) =vCl/2)=wCl/2) =MC1/2) =TC1/2) =0 C2.7) 

for ant..isymmet.ric buckling Codd number m of half-waves in 

x-direct..ion). 

The boundary value problem C2.1), C2.6) or C2.7) is self-
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adjoi nt. and, f'or t.he shell of' const.ant. t.hi ckness, is qui t.e 

equivalent. t.o t.hat. obt.ained by Pltigge (1967). Por example, if' 

t.he f'ollowing paramet.ers are assumed: m=l,n=2,:It=2,L>=O.3 and 

n=O.Oo, t.he st.at.e equat.ions (2.1) and t.he boundary condit.ions 

(2.6) det.ermine t.he crit.ical loading P=20.4968 which is equal 

t.o t.he most. accurat.e of' all t.he result.s given by Pltigge(1967). 

However, t.he general st.at.e equat.ions (2.1) may be simplyf'ied 

(mainly by reason of' 

assumpt.ions: 

x =X =X =X =X =X =1, 
1 2 .. .. :5 «5 

t.he inequalit.y wi t.h t.he 

(2.8) 

where t.he equat.ion X =1 
2 

is a good approximat.ion f'or a 

relat.ively small number of' t.he circumf'erent.ial waves n. The 

simplif'ied boundary value problem leads t.o t.he crit.ical value 

P=20.4660, so t.hat. t.he error is negligible. 

3. Opt.imal st.ruct.ural design 

The aim of' t.his paper is t.o det.ermine t.he opt.imal t.hickness 

* of' t.he shell ¢=¢ (x) which maximizes t.he lowest. crit.ical load 

under const.ant. volume condit.ion (2.0) and some addit.ional 

geomet.rical const.raint.s. Sensit.ivit.y analysis in conjunct.ion 

wit.h Pont.ryagin's maximum principle is chosen as t.he solut.ion 

met.hod. Theref'ore, t.he Hamilt.onian connect.ed wit.h self'-adjoint. 

boundary value problem (2.1), (2.6) or (2.7) and t.he const.ant. 

volume condit.ion (2.0) t.akes t.he f'orm: 

H (3.1) 

where t.he t.erms wit.hout. t.he cont.rol f'unct.ion ¢ have been 

ommit.t.ed, and where: 

2 

B =12W, 
1 

2 
3 MT, 

:It 

B =_1_ 
.. .. 

:It 
{ 

2 2 2v:lt(nv+w)T-2V:lt (n -1)wM+2n:ltuZ+2~+ 

[2 2 2 2 2]} +P ;u~-2nvw-n (u +v +w) , (3.2) 
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(nv+w)2, 

The conslanl Lagrange mult.iplier A should be det.ermined f'rom 

lhe condilion (2.5). 

In t.he case of' an N-modal opt.imizat.ion problem a new 

improved cont.rol f'unct.ion can be calculat.ed f'rom t.he f'ormula: 

¢/:I.) =¢/ 0) + cS¢. (3.3) 

whel'e ¢< 0) denoles lhe normalized cont.I'ol funclion known f'rom 

t.he pI'evious st.ep. The global increment. cS¢ can be det.ermined as 

a linear combinat.ion of lhe gradienls gi' 

parlicular modes of buckling: 

connect.ed wit.h 

6¢ = e(x) [/-1 g (x)+/-1 g (x)+ ..... +/-1 g Cx) - 1]. 
:I. :I. 2 2 N N 

where: 

g.(x)= 
l. 

(3.4) 

(3.5) 

and an arbilrary f'unct.ion e(x) (t.he gradient. slep) is assumed 

t.o be const.ant.. 

The small changes of' part.i cul ar ei genval ues are deler mi ned 

by t.he formulae: 

:I. 

6P. = J g. (x) cS¢e x) dx 
l. l. 

C3.6) 
o 

By equat.ing one of lhe variat.ions 6Pi , in parlicular 6P1 , t.o 

t.he l' emai ni ng (N-1) val ues and mak i ng use of' t.he nor mal i za t.i on 

condilion (2.5) one can delermine t.he conslant. mullipliers /-1i' 

4. Numerical calculat.ions 7 I'esult.s and conclusions 

St.art.ing from a cylindrical shell of' const.ant. lhickness (f'or 

n=2. v=0.3, 7')=0.05) lhe conlrol f'unct.ion ¢ex) was being 

improved according lo t.he rule (3.3) for lhe unimodal approach, 

connect.ed wilh lhe lowest. eigenvalue P(m,n)=P(1.4). For a 
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certain value of the gradient step e the consecutive ten 

iterations lead t..o t..he cont..rol funct..ions present..ed in Fig.l. 

The evolut..ion of t..he corresponding 19 values of the critical 

loads is demonstrat..ed as well. It can be observed t..hat.. in t..he 

ll-t..h it..erat..ion 7 eigenvalues are nearly equal to each ot..her, 

i.e. PC1,4), PC1,6), PC1,7), PC1,S), PC2,6), PC2,7), PC2,S). 

P(m,n) 

14 ;cx) 
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"z.g} 
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"f.9} 
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P(2.1) 

Ptt.81 
1'(2.61 

5 PIZ.5} 
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Plf.61 

3 P(O) 

Plf.5) 

2 P(1.~} 
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0 2 3 If 5 6 7 8 9 10 11 12 13 

Number of iteration 

FilfJ.I. Evolution of eilfJenvalues in II iterations 

From t..his point.. on 7-modal opt..imizat..ion would be necessary. 

However, t..he mul t..imodal procedure is rather complicat..ed lor 

ef'fect..ive calculations because of' a changeable number of the 

degree of' modality. Therefore, f'urther opt..imizat..ion process was 

continued as a unimodal one wit..h respect.. t..o t..he lowest.. 

eigenvalue at.. each it..erat..ion st..ep. Such a method of' calculat..ion 

is, of' course, very laborious but.. it can be perf'ormed 

automatically. The consecut..ive solutions presented in Fig.2 

suggest.. t..hat t..he wall thickness of t..he shell should be bounded 
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by an upper limit... at... least.... One of t...he possible solut...ions is 

shown in Fig.4. Of course, geomet...rical const...raint...s can be used 

in arbit...rarily chosen int...ervals of t...he x-axis. In such a case 

t...he opt...imizat...ion procedure leads t...o a ribbed shell. 
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1 Introduction 

In history man used bows which differ much in shape as well as applied materials. Simple 
bows made out of one piece of wood, straight and tapering towards the ends have been used by 
primitives in Africa, South America and Melanesia. In the famous English longbow the 
different properties of the sapwood and heartwood were deliberately put to use. Eskimoes used 
wood together with cords plaited of animal sinews and lashed to the wooden core at various 
points. The Angular bow found in Egypt and Assyria are examples of composite bows. In 
these bows more than one material was used. In Asia the bow consisted of wood, sinew and 
horn. These bows reached their highest development in India, in Persia and in Turkey. In the 
1960's composite bows of maple and glass fibres, or later carbon fibres, imbedded in strong 
synthetic resin were designed. Today almost all bows seen at target archery events are of this 
type of bow. 

Bowyers (manufacturers of archery equipments) relied for the design of the bow heavy 
upon experience. The performance of the bow was improved by 'try and cut' method. In the 
1930's bows and arrows became the object of study by scientists and engineers, Hickman, 
Klopsteg and Nagler, see [1] and [2]. There work influenced strongly the design al).d 
construction of the bow and arrow. Experiments were performed to determine the influence of 
different parameters. They also made mathematical models. As part of modelling simplifying 
assumptions were made. Hence only bows with specific features could be described. 

In [3] and [4] we dealt with the mechanics of the different types of bow: non-recurve, 
static-recurve and working-recurve bows. The developed mathematical models are much more 
advanced, so that more detailed information was obtained giving a better understanding of the 
action of rather general types of bow. 

In Section 2 of this paper the problem is formulated. All design parameters are charted 
accurately and quality coefficients are identified. The importance of the application of 
dimensional analysis is emphasized. In Section 3 the performance of different types of bow are 
compared. Roughly speaking the design parameters can be divided into two groups. One 
determines the mechanical performance of the bow. Within certain limits, these parameters 
appear to be less important as is often claimed. The other group of parameters concerns the 
strength of the materials and the way these materials are used in the construction of the bow. It 
turns out that the application of better materials and that more of this material is used to a larger 
extent, contribute most to the improvement of the bow. 

2 Formulation of the problem 

In essence the bow proper consists of two elastic limbs, often separated by a rigid middle part 
called grip. Because the bow is usually held vertical or nearly vertical, we can speak of the 
upper limb and of the lower limb. The back of a limb is the side facing away from the archer, 
the belly the opposite side. The bow is braced by fastening a string between both ends of the 
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limbs. The distance between the grip on the belly side and the string in that situation is called 
the brace height or flStmele. After an arrow is set on the string, called nocking, the archer pulls 
the bow from braced situation in full draw. This action is called drawing. Then, after aiming, 
the arrow is loosed or released, called loosing. 

We are concerned with bows of which the limbs move in a flat plane, and which are 
symmetric with respect to the line of aim. The bow is placed in a Cartesian coordinate system 
(x.,)!,), the line of symmetry coinciding with the :K-axis and the origin 0 coinciding with the 
midpoint of the bow, see Figure 2.1. We assume the limbs to be inextensible and that the 
Euler-Bernoulli beam theory holds. The total length of the bow is denoted by 2L. In our theory 
it will be represented by an elastic line of zero thickness, along which we have a length 
coordinate ~ measured from 0, hence for the upperhalf we have 0 :5; ~ :5; L. 

o H o 0 H o 0 H o 

Figure 2.1 Three types oebow: the a) non-recurve bow, b) static-rccurve bow and c) working-rccurve bow. 

This elastic line is endowed with bending stiffness WW and mass per unit of length YC:i). The 
geometry of the unstrung bow is described by the local angle eoW between the elastic line and 
the y-axis, the subscript 0 indicates the unstrung situation. 1.0 is the half length and 2mg the 
mass of the grip. The length of the unloaded string is denoted by 210, its mass by 2ffis. We 
assume that the material of the string obeys Hooke's law, the strain stiffness is denoted by !Is. 
Note that whether the length of the string or the brace height denoted by IQBJ fixes the shape if 
the bow in braced situation. 

The classification of the bow we use, is based on the geometrical shape and the elastic 
properties of the limbs. The bow of which the upper half is depicted in Figure 2.1.a is called a 
non-recurve bow. These bows have contact with the string only at their tips (.s. =!J with 
coordinates <x.t,X!). There may be concentrated masses illt with moment of inertia It at each of 
the tips, representing for instance horns used to fasten the string. 

In the case of the static-recurve bow, see Figure 2.1.b, the outermost parts of the limbs 
are stiff. These parts are called ears. Its mass and moment of inertia with respect to the centre of 
gravity of the ear <x.cg,Ycg) are denoted by me and le, respectively. The flexible part Lo :5;.s. :5; La 
is called the working part of the limb. In the braced situation the string rests upon string
bridges, see Figure 2.1.b. These string-bridges are fitted to prevent the string from slipping 
past the limbs. The place of the bridge of the upper limb is referred to as (Kb,Yb). 

With a working-recurve bow the parts near the tips are elastic and bend during the final 
part of the draw, see Figure 2.1.c. When drawing such a bow the length of contact between 
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string and limb decreases gradually until the point where the string leaves the limb, denoted by 
~ = ~w, coincides with the tip ~ = L and remains there during the final part of the draw. In 
Figure 2.1 the bow is pulled by the force E(hl, where the middle of the string has the x
coordinate 12. To each bow belongs a value 12 = 1001 for which it is called fully drawn indicated 
by a subscript 1. The force E(IQDJ) is called the weight of the bow and the distance IQUI is its 
draw. By releasing the drawn string at time 1 = 0 and holding the bow at its place, the arrow, 
represented by a point mass 2rna is propelled. The arrow leaves the string when the acceleration 
of the midpoint of the string becomes negative. This moment is denoted by 11 and the muzzle 
velocity of the arrow is referred to as g. 

A shorthand notation for a bow and arrow combination is introduced with 

li(b,lo, W W, V W,eO(~,ill.a,illt,It,!!lc,1e,mg,2S.cgoYcg,XbO'YbO,XtO,YtO,la,!ls,!!!s,IQHJ or 10; 
IOOI,E(IQUI),lib), (2.1) 

where mb is the mass of one limb excluding the mass of the grip. 
Note that the last two mentioned parameters are added to the list artificially. This implies 

that both functions W(~) and YW are constrained. We consider the values of these functions 
for ~ = LQ to be already fixed by both constraints. The first constraint concerning the weight, is 
an implicit relationship between a number of parameters of which .wCs) is one of them, and the 
weight E(IODI) of the bow. The second constraint is just 

12 
mb = f V (~) d.s. + me . 

10 
(2.2) 

and for a given mass of the bow the value V(Lo) is derived easely. This shows that both 
functions are considered to be the product of a function W(~IlY(Lo) and Y(~IY(lo) of the 
length coordinate oS. into IR and a parameter WCLo) and Y(bo) with dimensions. 

2.1 Dimensional analysis 
In this paragraph the 24 parameters of Equation (2.1) are considered as elements of a 
dimensional space 1t, spanned by a fixed system of units E 1 = length in cm, E2 = force in kgf, 
E3 = mass in kg and E4 = time in .03193 sec (see later on). According to the Pi-theorem one 
can write (2.1) in the form with the dimensionally independent parameters IQUI, E(IQUI) and 
mb, referred to as AI, A2 and A3 (dimensional base) and dimensionally dependent parameters 
L, ... , IOHI or!o, referred to as lil, ... , li21. With j = 1(1) 21 and i = 1(1) 3 we have, 

334 
li = B(BI, ... ,B21) IT Aiai, lij= Bj IT Aiaji, Ai= Ai IT Ekzik, (2.1.1) 

i=l i=l k=l 

where aji, aj E IR and Bj E IR+. We have for example 

L = L IQUI, K = K .E(IOOI) , rna = rna lib. (2.1.2) 

and for the functions of the length coordinate oS. 

W(.s.) = W(s) 10012 • .E(IODI), YW = Yes) 16& . (2.1.3) 
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Observe that these functions of li are also transfonned to functions of the dimensionless length 
coordinate s. Also the angle ew between the elastic line and the ~-axis will be transfonned to 
e(s), where we should have used a new symbol. With respect to dimensional analysis this 
yields no added difficulties. Finally we have 

IODI = IODI cm, E(IODI) = F(IODI) kgf, lib = mb kg . (2.1.4) 

So, quantities with dimension are labelled by means of a underscore '_' and quantities without 
the underscore are the associated dimensionless quantities. 

The unit of time is already fixed by the choice of the other 3 units: cm, kgf and kg. For 
the time 11, the moment the arrow leaves the string, we have 

~ mb • IODI ~ mb • IODI ~kg. cm 
11 = tl (L, ... , IOHI or 10) • E(IODI) = tl • F(lODI)· kgf. (2.1.5) 

This means that the unit of time equals .03193 sec. 

2.2 Quality coefficients 
The purpose for which the bow is used has to be considered in the definition of a cost-function 
which could be optimized in order to obtain the 'best' bow. However, it appears to be very 
difficult to define such a unique cost-function. Therefore we introduce a number of quality 
coefficients which can be used to judge the perfonnance of a bow and arrow combination. The 
static quality coefficient q is given by 

A 
q = A = 1001 • f(lOOI) , (2.2.1 ) 

where A is the dimensionless energy stored in the elastic parts of the bow, the working parts of 
the limb and the string, by defonning the bow from the braced position into the fully drawn 
position. The dynamic quality coefficients are the efficiency 1'\ and the muzzle velocity referred 
to as v. They are defined by 

m.a • &12 ~ 11 • 1'\ 1'\= ,v="L.......:.!... A rna 
(2.2.2) 

Observe that by definition these quality coefficients are dimensionless. This means that 
the sensitivities of these coefficients with respect to the elements of the dimensional base IODI, 
E(IODI) and mb can be obtained directly, without solving the governing equations of motion 
which constitute the mathematical model again. The selection of the dimensional base is not 
unique. The motivation to take draw, weight, and mass of one limb is the following. The 
maximum draw and weight depend on the stature of the archer. His 'span' determines the 
maximum draw and his strength the maximum weight, so both have physical limitations. In 
practice the minimum mass of one limb has technical limitations which will be the subject of the 
next section. In our approach the elements of the dimensionless basis are selected based on the 
limitations which make the optimization problem well posed. Hence, the choice of the 
dimensional base is coupled to the fonnulation of the quality coefficients. The advantage of this 
technique is that with the comparison of different bows, taking the quantities IODI, F(lODI) and 
mb equal to 1, yields interpretable results for the quality coefficients. 
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2.3 The construction of the bow 
The limbs of the bow are considered as a beam of variable cross-section DW made out of one 
material with density Il and Young's modulus Ii. With the Euler-Bernoulli hypothesis the 
normal stress Sl~,!,r) depends linear on L the distance from the neutral axis which passes 
through the centroid of the cross-section. We assume that the maximum bending moment for 
each .s. as a function of time 1 occurs in the fully draw situation. Then we have, when Ab 
denotes the elastic energy in the limbs of the bow in fully drawn situation, 

(2.3.1) 

where ~(~ is the area of the cross-section. The stress Sll is the resulting normal stress due to 
the bending moment in the fully drawn bow, indicated by the subscript 1. 

We define now two useful quality coefficients 

Q 2 
.Qbv = 1/2 ~ , 

P.& 
Ab 

aD = , 
2!!lb • .Qvv 

(2.3.2) 

where Slw is the working stress of the material, equal to the yield point or the ultimate strength 
divided by factors of safety. The quantity ~bv is the amount of energy per unit of mass which 
could be stored in the material. In Table 2.3.1 an indication of this quantity of some materials 
used in making bows is given. 

material Slw f. j2 Qbv 
kgf/em2 x 102 kgf/em2 x 105 kg/em3 x 10-6 kgfem/kg 

steel 70.0 21.0 7800 1300 
sinew 7.0 .09 1100 25000 
hom 9.0 .22 1200 15000 
yew 12.0 1.0 600 11000 
maple 10.8 1.2 700 7000 
glassfibre 78.5 3.9 1830 43000 

Table 2.3.1 Mechanical properties and the energy per unit of mass .Qbv for some materials used in making bows, 

see also [5]. 

The dimensionless coefficient aD is generally smaller than 1 for two reasons. Firstly, the tensile 
and compression stresses in the outermost fibres of the limb may be less than the working 
stress in the fully drawn bow. With the design of the limbs one has to assure stability of the 
limb, without tendency to twist or distort laterally when the bow is drawn. In practice this is 
accomplished by the requirement that the width of a limb may not become smaller than the 
thickness. Not all material near to the tips is used then to the full extent. 

The stress in the fibres near the neutral axis is smaller than the working stress and this 
reduces the coefficient aD too. Suppose the bow is in a homogeneous stress-state, then 

(2.3.3) 
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where ~ is the distance between the outennost fibres and the neutral axis. If the material has the 
same strength in tension and compression, it will be logical to choose shapes of cross-section in 
which the centroid is at the middle of the thickness of the limb, equal to 2 ~<s.). Hi> is the 
moment of inertia of the cross-section with respect to the neutral axis. The quantity 2J1~ is called 
the section modulus. In handbooks the magnitude of the moment of inertia and the section 
modulus are tabulated for various profile sections in commercial use. We stick at the usage of 
the defined coefficient aD which is dimensionless and follows in a straightforward manner from 
our statement of the problem. 

We consider the quantity aD defined by (lD(~ = aW)/(£(~ ~(~)21 , Lo ~ ~ ~ L , for 
various shapes of cross-section of limbs. For a bow with similar cross-sections at different 
values of S. we have aD = aD. The English longbow possessed a D-shape cross-section, the 
belly side approximately fonned by a semicircle and the back side being a rectangular. When 
the radius of the semicircle equals the half of the thickness of the limb aD equals .255, so 
smaller than .333 for a rectangular and more than .25 for a elliptical shape. Steel bows, for 
instance the Seefab bow invented in the 1930's, were on the principle of a flattened tube. We 
assume that the inner diameter equals k times the outer diameter for any line through the centre 
of the ellipses. For k = .9 the magnitude if aD becomes .4525, so larger than the other 
mentioned values, as to be expected, because relatively more material is placed near the 
outennost fibres. 

There is still another technique to increase the value of aD. In ancient Asiatic bows, horn 
and sinew, together with wood, were used on the belly and back side, respectively. Horn is a 
superb material for compressive strength and sinew laid in glue has a high tensile strength, see 
Table 2.3.1. The Young's modulus of both materials is rather small, but the pemlissible strain 
is very high. The space between the two materials near the outermost fibres is filled up with 
light wood, which has to withstand the shearing stresses. In modem bows horn and sinew are 
replaced by synthetic plastics reinforced with fibreglass or carbon. So, in composite bows not 
only better materials are used, but they are also used in a more profitable manner. For 
composite bows we define equivalent quantities for the Young's modulus and density for a 
simple bow which has the same mechanical action as the limb of the composite bow. If these 
magnitudes are substituted in the product aD" Qbv it can be substantially larger than the 
magnitude of the product for simple wooden bows. The importance of this product follows 
from the equation for the stored energy Ab per mass of the limb lib and, when we neglect the 
elastic energy stored in the string, the equation for the muzzle velocity 

£.l=~ 2 Xb" ~"aD" .Q.bv. (2.3.4) 

Hence, the muzzle velocity of an arrow depends on: the static quality coefficient q divided by 
Ab, the amount of elastic energy stored in the fully drawn limbs, the efficiency divided by the 
dimensionless mass of the arrow and finally on the product aD ".Qbv. The first tenn shows that 
the amount of energy in the elastic parts of the bow in braced situation should be as small as 
possible. For q equals the energy stored in the fully drawn bow minus this energy in the braced 
bow. A large q implies, however, heavy limbs and this in tum implies a small ma, because this 
is the arrow mass divided by the mass of one limb. 

The efficiency depends largely on the masses of the arrow and string. This influence 
can be assessed from a simplified model of the string moving in straight lines between the 
points of attachment and the arrow. The resulting distribution of the kinetic energy along the 
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string indicates that 1/3 of the mass of the string should be concentrated at the middle where the 
arrow meets the string. Hence, 

max TJ "" rna + 1/3 • ms' (2.3.5) 

is an approximation of the maximum attainable efficiency. The quotient TJ/ma increases with 
decreasing rna and this holds probably also to a certain extent for a real bow. However, there 
are limits, for the arrow has to be strong enough to withstand the acceleration force. Further, 
every archer knows that it is not allowed to loose a fully drawn bow without an arrow. In that 
case the efficiency equals ° and the bow or string can even break. For small arrow masses our 
assumption, the maximum bending moment to be equal to the value in the fully drawn situation, 
is obviously violated. There seems to be an optimum for the mass of the arrow. 

In order to reduce the mass of the string the applied materials should be strong. Man
made fibres such as Dacron and Kevlar are used. The maximum force determines with the 
strength of the material the minimum mass of the string. This maximum force will certainly not 
occur in the fully drawn situation. 

3 Results and conclusions 

In this section we start with a sensitivity study for a straight-end bow. In our mathematical 
model derived in [4], the action of a bow and arrow combination is fixed by one point in a 24 
dimensional parameter space. First of all we deal with the 21 dimensionless parameters. Three 
of them are functions, viz. W,V,9 : [Lo,L] -t IR. These functions are written in a simple form: 

( L-s)p 
WnCs) = Wn(LO)· L _ LO n , La ~ s ~ En, 1/3 WnCLO), En ~ S ~ L, 

and 

( L-s)Pn V n(s) = V n(La)· L _ LO ' La ~ s ~ En, 1/3 V n(La) , En ~ S ~ L . 

with EI = L, n = 1, En = L - (L--LO) • 3 -I/Pn, n = 2,3 and PI = 0, P2 = 1/2, P3 = I . (3.1) 

The shape of the unstrung bow is given by 

Oo(s) = OoCLO) + K'() • (L - s)/CL - LO) , LO~s~L. (3.2) 

Under this description, these functions is fixed by only three parameters P, 90(Lo) and 1(0. The 
two string-parameters, the mass ms and the stiffness Us, are for a particular material fixed by 
the number of strands. An increase of this number, ns makes the string stiffer but also heavier. 
We start with a straight-end bow described by Klopsteg in [1]. This bow is referred to as the 
KL-bow (Figure 2. La). In shorthand notation introduced in (2.1), it is represented by 

KL( 1.286,.1429,n=1 ,90(Lo)=0, 1(0=0,.0769,0,0,0,0,0,0,1.286,0,1.286,0,1.286, 
1.286,131,.0209,IOHI = .214) (3.3) 

TIle sensitivity coefficients, i.e. the partial derivatives of the quality coefficients with respect to 
the design parameters, are presented in Table 3.1. These sensitivity coefficients were calculated 
with the classical approach with finite-difference approximations. 



www.manaraa.com

290 

L Lo ~ 9o(Lo) !co rna rnt It ns IOHI 

W(Lo) 4.24 -3.4 .45 2.6 1.81 .0 .0 .0 .0 -.33 
V(Lo) -1.4 1.4 .70 .0 .0 .0 .0 .0 .0 .0 
q .07 -.05 .0 -.15 -.18 .0 .0 .0 .0 -.39 
11 -.11 .15 -.06 .46 .3 3.4 -1.1 .0 .0 .0 
v .0 .07 .07 .25 .0 -f>.7 -1.6 .0 .0 -.83 

Table 3.1 Sensitivity coefficients for Ihe straight-end KL-bow. 

We conclude that the mass of the arrow is the most important parameter for the efficiency and 
for the muzzle velocity. Further tip-masses should be avoided because they reduce the 
efficiency. 

Representations of different types of bows used in the past and in our time form clusters 
in the parameter space. In the preceding sensitivity analysis one cluster, that for a straight-end 
flatbow, was analysed. In what follows we consider other types of bow: another non-recurve 
bow, the Angular bow, to be called the AN bow (Figure 3.1.a), two Asian types of static
recurve bow, to be called the PE (Figure 2.1.b) and TU bow (Figure 3.1.b) and two working
recurve bows, one with an extreme recurve, to be called the ER bow (Figure 2.1.c) and a 
modem working-recurve bow to be called the WR bow (Figure 3.1.c). 

o H o o H 

Figure 3.1 The slatic deformation shapes of a) Ihe AN-bow, b) Ihe TU-bow and c) Ihe WR-bow. 

All the quality coefficients for these types of bow are shown in Table 3.2. The results 
indicate that the muzzle velocity is about the same for all types. So, within certain limits, these 
dimensionless parameters appear to be less important than is often claimed. The efficiency of 
strongly recurved bows is rather bad. 

In Table 3.2 the values of the quality coefficients for a modern working-recurve bow 
are also given. The shape of the bow for a number of draw-lengths is shown in Figure 3.1.c. 
Figures 3.2.a and 3.2.b give the shape of the limb and the string, before (0 ~ t ~ tl) and after (tl 
~ t) arrow exit. Observe the large vibrations of the string after the arrow leaves the string, 
which imply that the brace height has to be large. 
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Bow q 1\ v rna ms WQ...,o) VQ...,o) Ab q/Ab 0 1\/ma 

KL-bow .407 .765 2.01 .0769 .0209 1.409 1.575 0.5155 7.85 
AN~bow .395 .716 1.92 .0769 .0209 0.2385 2.300 0.5493 6.70 
PE-bow .432 .668 1.94 .0769 .0209 0.2304 1.867 0.5879 6.38 
TU-bow .491 .619 1.99 .0769 .0209 0.1259 1.867 1.0817 3.65 
ER-bow .810 .417 2.08 .0769 .0209 0.3015 2.120 1.4150 3.10 

WR-bow .434 .729 2.23 .0629 .0222 2.5800 1.95 0.6930 7.25 

Table 3.2 Dimensionless quality coefficients for a number of bows. 

a H o a H o 

Figure 3.2 Dynamic deformation shapes of the WR-bow for a) 0 ~ t ~ tl and b) tl ~ t. 

These results show that the modern working-recurve bow is a good compromise 
between the non-recurve bow and the static-recurve bow. The recurve yields a good static 
quality coefficient and the light tips of the limbs give a reasonable efficiency. Note that the mass 
of the arrow of the modern working-recurve bow is smaller than the other values mentioned 
This accounts for a smaller efficiency, but also larger muzzle velocity. 

How can these dimensionless quantities be used in the design of a bow? In practice the 
manufacturer wants to design a bow with a specified draw 1001 and weight E(IQ!21) using 
available materials with given Young's modulus g and density u,. The use of Equation (2.1.3) 
gives a value for I(~. The thickness of the limb associated with the distance between the 
outermost fibres and the neutral axis .I< is then fixed by 

I(~) W(s) Q:w 
soW = MIW 0 Q:w = Ml(S) 0 g 01001, (3.4) 

These calculations can be done after the solution of the static equations yielding M 1 (s). After 
the selection of the shape of a cross-section of the limbs D~), the width is fixed. To ensure 
stability this width should not be taken smaller than the thickness of the limb. The area of the 
cross-section.c.W can then be calculated. ~W and the density g,jointly determine the mass of 
the limbs mb. This completes the design of the limbs. 

Hence, for a homogeneous stressed bow two parameters given in (2.1), the mass 
distribution V(s) and the total mass of the limb mb, depend on other parameters of (2.1) and 
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Young's modulus~, density Il, working stress Q:w of the material and finally the shape of a 
cross-section D(s). More parameters of (2.1) are dependent in practice. The parameters 
concerning the ears, lie, le, &g, ~g, ~O, ~O, ~lO, )::lO, 12, are strongly related and there is a 
relationship between the string parameters!ls, .ills and the strength of the material used for the 
string together with the maximum force in the string. This force is not known from the static 
calculations, so an initial guess has to be made, which must be checked after the dynamic 
calculations. 

We considered a number of different bows used in the past and in our present. In Table 
3.3 we give values for the parameters with dimension, weight, draw and mass of one limb, for 
a number of bows described in the literature. Estimations of aD are also given. These 
approximations have to be rough for lack of detailed information. 

Reference Type E(IQQI) IQQI 2!!lb 21 ~bv Ab aD 

[l] Ilalbow 15.5 7l.l2 0.325 182.9 9000 .52 .20 
[4] longbow 46.5 74.6 0.794 189.4 9000 .52 .25 
[6] s\CClbow 17.2 71.12 0.709 168.9 1300 .52 .69 
[7] Tartar 46.0 73.66 1.47 188.0 20000 .59 .07 
[8] Turkish 69.0 7l.l2 0.35 114.0 20000 1.1 .77 
[4] modem 12.6 71.12 0.29 170.3 30000 .70 .07 

Table 3.3 Paramelers with dimension for a number of bows and an estimation of aD. 

These results indicate that the short Turkish bow is made of a combination of good materials 
which are used to the full extent. This explains the good performance of these bows in flight 
shooting, and not the mechanical perfornlance of these bows; see Table 3.2. The modern 
materials are the best, but the calculated value of aD for the modern bow suggests that they are 
used only partly. The calculated efficiency of the modern working-recurve bow correlates weIl 
with values given in the literature. The value of 72.9% is, however, rather low. The maximum 
for the efficiency according to Equation (2.3.5) from the mass of the string determined by the 
parameters given in Table 3.2 is about 90%. Hence, it seems to be possible to improve this 
quality coefficient with the help of the mathematical model presented here. 
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Biological load carriers are structures which are well adapted to their main loading con
ditions. 
In the architecture of spongy bone, for instance, the orientation of the network of trabecula 
is supposed to be able to take the load best and with a minimum of weight. 
The trabecula themselves are arranged in alignment with the trajectories of the principal 
stresses [1,2]. Changes in the loading situation result in a disturbance of an optimum 
condition. But biological structures are able to react and to restructure. They build new 
load-bearing elements, where they are needed or they eliminate stress-shielded regions. 
After these modeling processes the new system will be adapted to an optimum for the new 
situation and be used to its full capacity again. 
But not only the inner trabecular architecture is able to adapt to a new loading situation. 
Biomechanical studies on the stress distribution in healthy bones showed that the outer 
shape and geometry of the long bones are designed in order to prevent overloaded or 
stress-shielded parts, too. So the morphology will change and the structure will alter if the 
former equilibrium is disturbed. Homogeneously distributed stresses along the surface 
areas are aspired. The effects will be shown with the help of a finite-element analysis. 

Method 

Using a new method (CAO - Computer-Aided-Oplimization) for shape optimization [3,4] 
the adaption of different bony structures to changes in the loading situation is shown. 
The principle is to simulate growth at surface areas of high stress levels and to allow the 
structure to shrink and to remove material in stress shielded regions compared to a given 
reference stress. In the following analysis the Von-Mises-stress distribution is used as a 
criterion for the loading situation. The action will be shown examplary by braces of a 
framework and the shape of long bones healing in malpOSition. 
The aim is to reach a design which endures the given loads best with homogeneously 
distributed stresses at the surfaces regions e.g. without any notch stresses. 
The following examples are plane strain FE-structures built of 4 node bilinear elements. 
An isotropiC material behaviour is assumed. The Young's modulus and the Poisson's ratio 
are uniform for each model. 
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Results 

Fig.l shows on the lett the initial FE-structure of a brace in a framework, the loading case 
and the boundary conditions. The model consists of two parallel horizontal beams and a 
slanted beam connecting these two beams. The pressure acts in a vertical direction for 
which the shape of the connecting brace is not an optimum design. The results are bend
ing moments and inhomogeneously distributed stresses at the surface which cause the 
connecting brace to straighten up, shown by different stages of the contour of the struc
ture. The surface of the structures is allowed to swell during the procedure in regions of 
high stresses and to shrink in regions of low stresses compared to the reference stress: 
(10 • High stress levels are found in the transition of the horizontal to the slanted beam for 
the starting structure. It could be shown that similar to the remodeling behaviour of bone, 
stress peaks will be reduced first by adding material and lateron unneccessary material 
will be removed. The slanted brace is rotating and the terminal shape is a vertical brace 
positioned in direction of the applied pressure. The diagram and the von-Mises stress 
distribution show that the stresses along the contour are now homogenized (fig.l). 

The second example are vertical braces connecting horizontal beams. The vertical load 
acting along the center line of the vertical brace would use the structure to its full capacity. 
So that situation would be an optimum lor the vertical brace. The value of the homogene
ously distributed stress for the above mention loading case is used as the reference stress 
for the loading case given in fig.2. The force is now acting at a certain distance from the 
center line of the stem and causes bending and the disturbance of the former optimum 
situation. Overloaded and stress shielded regions are produced. So the brace is drifting 
to reach an optimum for this loading situation and to obtain homogeneously distributed 
stresses on the surface. The results of the development are also represented for different 
stages. At last the stresses along both contours of the brace are homogenized. 

Another example is a broken femur healed in malposition. The x-ray (fig.3d) shows the 
present-day situation. The simUlation has been started with a structure of an assumed 
situation a short time after the fracture (fig.3a). The given load was a bending moment. In 
a first step only growing of the surface layer was allowed in order to reduce the maximum 
stresses. Fig.3b shows the adapted structure where the stress peaks have already disap
peared. But parts of the bone are still stress-shielded. In a second step removal of mate
rial was allowed, too. The bone also grew into a state of homogeneously distributed 
stresses (fig.3c), into an optimized shape in the sense of a compromise design. 

The same effect is demonstrated for the model of a broken fibula. Starting again from an 
assumed former situation the finite element structure was loaded by a single force on the 
top of the model in direction of the foot-point. The place where the force is applied is a 
second fracture site where two parts of the bone are in contact. The loading case causes 
bending moments in the model and stress peaks so that growth in overloaded region 
appears. The bone at the place where the force acts grows excessively and the calculated 
shape fits the real contour well. Increasing the contact area leads to a reduction of the 
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high stress level at this upper point. The entire calculated shape fits the real structure well 
with respect to the chosen simplifications of the model. 

Discussion 

The aim of the study was to show the development of bony structures under the influence 
of pathological changes with the help of a new shape optimization method. The ability of 
biological load carriers to adapt their morphology to the current loading situation could 
be simulated. Braces of frameworks in spongy bone for instance are able to rotate into 
directions and drift to places where they are needed. The possibility to generate frame
works which perform their task best, with minimum weight should be also of great interest 
to engineering structures. 
Considering the outer shape of long bones it could be observed that bone attaches mate
rial first where it is necessary to prevent failure and after stabilization the low-weight 
design is aspired and material removed. The comparison of the x-rays and the calcu
lations makes clear that the remodeling of the bones in the examples hasn't yet finished. 
Low-loaded regions near the fracture side are supposed to decrease in future until a 
homogeneous stress state is reached. 
The criterion of a homogenous von-Mises stress distribution seems to be completely suf
ficient for the prediction of bone growth. 
The exact shape of the bones couldn't be found in all details because the finite element 
models are simplified two-dimensional structures which don't consider the respective 
depth nor the variation of the Young's modulus. But the tendency of bone adaption, 
growth and reduction of material in relation to the stress distribution could be described 
satisfacto ry. 
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Fig.1 Adaptive rotation of trabecular bone 
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Adaptive drifting of trabecular bone 
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Fig.3 Femur healing in malposition 
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Fig.4 Fracture healing of broken fibula 
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1. Int.roduct.ion 

It is commonly accepted. that advances in computer technology should 

be exploited in a way that stimulates creativity of a desiRner. The CAD 

systems have already released him from the tedious drawing and the 

FEM-based programs overlook time-consuming strength calculat ions. One 

should not overlook. however, the circumstance that both improvements 

concern the second stage of the design process! the detailed planning 

and verification of an already chosen concept. 

It 

layout 

is well known. that possible refinement of 

(e.g. an optimization of cross-sections 

give benefit in cost 

a Riven structural 

or reinforcement). 

or of though generally 

structure of the 

welcome. 

order 5 20%. On the 

structural scheme particularly suitable 

lead to a double or tripple gain. 

contrary. se lect ion of 

for a given application 

the 

the 

may 

It is not aslonishing. therefore. that 

nowadays from classical design support 

research efforts shift 

tools. like structural 

optimization via mathematical programming. towards expert systems that 

help the designer in taking conceptual decisions. One of the earlier 

attempts in that direction has been taken by the second author in his 

paper [1]. where structural optimization in classical sense was 

augmented by certain heuristics concerning the initial values of the 

design variables and the treatment of constraints. That effort has been 

further continued and the present paper presents an integrated system 

including a generator of initial designs. The latter uses experience 

stored in an appropriate database. 
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2. Domain Knowledge in Computer Programs 

All computer programs have a certain amount of domain knowledge 

incorporated into them in the form of algorithms, rules, formulae and 

program constants. Depending on the form in which the knowledge is 

represented, two cathegories of computer programs can be considered. 

In conventional programs domain knowledge is applied at the early 

stage of the program development. usually when the solution algorithm 

is formulated. It cannot be separated from the program itself. The 

improvement of the knowledge is difficult and requires modification of 

the source code or of the algorithm. The algorithm precisely defines 

what actions must be performed to obtain the solution. Each execution 

is carried out in exactly the same way. unless the designer modifies 

the program or the data. 

Another cathegory of programs are, so called. knowledge-based 

programs. in which domain knowledge is separated from the processing 

mechanism. It is represented explicitly in the form of knowledge base. 

The domain expert concentrates on formulating relations and facts 

concerning the considered problem, while another specialist - knowledge 

engineer is involved in developing the inference mechanism. 

Doth programming styles are applied in structural design. Strength 

calculations are successfully performed using conventional programs. as 

all stages of the solution process are defined well and all situations 

can be considered in the algorithm. In some stages of the design 

process knowledge based approach can be more suitable. One of such 

stages is generating the initial design. The computer support during 

this stage of the design process is weak and the stage itself is often 

omitted in the discussion. It is usually assumed, that the initial 

design is "somehow" generated, although it is generally acknowledged, 

that the most significant decisions concerning the structure are 

llndertaken in this stage (i. e. type of structure, material, topology, 

supports, etc.). During the remaining stages adopted values are only 

modified and improved. 

Two kinds of knowledge are involved in creating the initial design. 

The first one represents information enclosed in books. codes of 

practice, design manuals, etc. These recommendations often give only 

lower or upper bounds on the values of the design parameters and, being 

very useful during verification of the existing designs, are quite 

inefficient when a new structure must be dimensioned. In the real-life 

design, selection of the parameters i& usually based on some 
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heuristics. which constitute the second kind of knowled/'!e involved in 

the process. The heuristics are the results of previously acquired 

experience. 

3. Exploiting Experience 

A person becomes a good designer in two stages: first. one has to 

accumulate a domain specific knowledge. then. one has to acquire 

sufficient experience. The first stage is usually accomplished during 

the professional education. whereas the second one requires practice in 

the design office. Few people manage to become outstanding designers. 

They are able to find innovative solutions. that do not follow the 

trends dictated by the previous experience. or even contradict them. 

This kind of the creative process seems to be. fortunately. beyond the 

scope of automatization (2). 

On the contrary. it is quite possible at present to stimulate the 

full exploitation of the experience currently available in the specific 

domain of the design activity. Restricting the latter to structural 

EnRineering. we observe the followinR: 

a) Both control data (loads. heights. spans. etc.) and the design 

parameters (coordinates. thicknesses. etc.) are discrete in their 

nature. This circumstance. coming from practical requirement of 

modularity and beinR cumbersome in the classical approach to 

structural optimization. becomes favourable when the AI approach is 

adopted. 

b) A large but finite set of 

exper ience) can be separated 

already accepted solutions (design 

into smaller subsets by applying a 

suitable taxonomy of the domain. Organized into a relational 

database. this experience becomes available to each desiRner. This 

process is particularly beneficial in large design offices. where 

employees can take into consideration solutions worked out by 

leading experts. 

c) A reasonable estimate of the solution not available at present in 

the database can be obtained in two ways: either by relaxinR 

constraints of the query or by interpolating between adjacent 

projects. 

d) The system is learning in the sense of improving quality of its 

proposals with increasing number of entries in the database. This is 
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due to the circumstance that a more dense distribution of the base 

points in the design space improves the estimate. The proposed 

approach has been implemented differently than the case-based 

algorithm reported by Arciszewski and 2iarko f31. but both systems 

exhibit similar learning capability. 

4. Implementation 

A prototype computer program has been implemented on MS/DOS 

machine. The present version of the program is restricted to planar 

trusses. but few changes will allow us to expand it for structures in 

bending. The program integrates the following specialized units: 

the input module for direct graphical description of the structure, 

loading and design variables; 

the (ltwlysis module, that calculates structural response to the 

given load (linear elastic behaviour is assumed); 

the 01" imizal ion module for minimum weight design with either 

cross-sectional areas or nodal coordinates as de~ign variables; 

the knowledge-based module for the access to the database and, upon 

request, for the automatic generation of feasible design. 

Procedural part of the system has been implemented in Pascal. whereas 

the expert part is written in Prolog. 

4.1. Optimization Module 

In the developed program. execution of the optimization unit is 

optional and the initiative is left to the user. who can proceed from 

interactive design to optimization in any stage of the process. The 

decision variables can be introduced when the initial design is 

formulated or during the modification. 

The structure mass has been selected as ob.iective function. The 

cross sectional areas and joint coordinates can be the decision 

variables. The constraints have been adopted according to the desiRn 

code. They concern stresses in elements, maximum joint displacement, 

minimum slenderness of the compression members. Additional constraints 
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concern the rate of the change of the decision variables and result 

from the method of the solution used in the program. The nonl inear 

programming problem is solved using the simplex method. The 

optimization can be performed in two modes. In the first, the 

optimization is carried until the final solution is found. In the other 

mode the user indicates the number of iterations, after which partial 

results are displayed. These concern the values of the decision 

variables and the value of the mass of the structure. Decision 

variables are presented displaying the modified shape of the structure 

and using colors to indicate suggested change in the cross sectional 

areas of the elements. Beside the values of decision variables. the 

change of the mass is also presented in the form of a bar chart. After 

checking the partial results, the user can: 

continue the optimization. 

reject the results and generally modify the structure, 

accept the partial results as final values of the decision 

variables. 

The main idea is to allow the user to control the optimization. An 

experienced designer can stop the process. if it proceeds in the wrong 

direction (unaccepted changes of the shape) or if program seems 

"locked" (nonsignificant mass changes). 

4.2. The Knowledge-Based Module 

The knowledge-based module consists of two parts: 

the database. 

the rule base. 

The database contains all previously accepted solutions (stored 

automatically). as it seems the simplest and most natural way of 

retaining the knowledge and experience applied by the user during the 

design process. The following attributes serve as key-words in the 

database: function, shape, type of bracing, span, height in midspan, 

height at the support, and loading. Three of them, namely. the 

function, the span and the load must be specified by the user. Other 

attributes are optional.In the case when more than one solution with 

given attributes can be found. the list of selected files is displayed. 

Appropriate desiRn is then visualized and modified to fit actual 

demands. 
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The initial design can be also generated using rule based module. 

The requirements and constraints. cominR from desiRn codes and 

recommendations can be relatively easily represented in the form of 

IF ... THEN ... rules and coded in the form of rule base. Some rules are 

presented in Fig.l. 

(i) IF 
function: roof AND span> 15m 
THEN 
shape : trapeze 

(ii) IF 
function : roof AND loading> 300kN 
THEN 
shape : trapeze 

(iii) IF 
function : roof AND initial shape 

THEN 

trapeze AND 
roof slope > lOZ 

new shape : triangle AND heighl at lhe support = 0 

(iv) IF 
function: column AND initial shape: constant AND 

loadinR > 300kN 
THEN 
new shape : variable 

Figure 1. Sample rules coded in the rule base. 

Similarly as when using the database module. the user indicates the 

att.ributes of the structure. The inference engine selects the most 

rational values of the missing attributes. basing upon the given rules 

and checks the consistency of the attributes stated by the user. In the 

case of inconsistency the parameters are modified and an adequate 

communicate is displayed. 

After the set of attributes is complete. the expert module performs 

sizinR of the structure. which goes on as follows. First. an attempt is 

made to find an identical structure in the database. If it is not 

possible. then the search is repeated iterat.ively with decreasinR 

demand for similarity at each subsequent iteration. The type of bracing 

and the heiRht are early discarded from the constraints. whereas the 

funclion and the span of the truss are preserved. The cross-sectional 

areas of the elements applied in the selected desiRn are then adopted 

as initial values in the considered structure. Afler the selection has 

been compl~ted. the project is displayed graphically and the user can 

proceed with possible modifications. Typical roof trusses generated by 

the module are presented in Fig.2. 
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6.0 9.0 1,0 

15.0 

15.0 

I 

(K] - Konfigurac:ja 
(P] - Pru"leszc:z. 
(H] - HilPrazenla 
(s] - S .... k lose I 
!O] - Drulc (c:"le) 
lEnd] - koniec 

[K] - Konf igur .. c:ja 
(P] - Prza"ieszc:z. 
[Hl - "apre%eni~ 
IS] - S .... klosei 
(0] - Oruk (c:ale) 
(End] - konlec 

'. 

FiRure 2. Typical roof trusses generated by the expert module. 
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'"0 2.0 IS-O 

KI - Konfiguracja 
(PI - Pn .... leszez. 
(HI - Hapruenia 
lSI - Snuklosci 
(D) - Druk (ul,,) 
End) - konlec 

The experience gained so far in exploiting the package indicates 

clearly the advantages gained through integration of computer graphics, 

procedural and declarative programming. Generating initial design based 

upon previously approved pro.iects increases considerably the 

productivity of the design office. 
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1. Th. Concept Dr YDM SiMulation Dr R.deaign 

Following the concept Dr simulation Dr structural redesign by 

a rictitious rield Dr virtual distortions (cr.Rer.l) let us derine 

the initial.. modi/i.ed and di.storted structural conf'igurations 

(Fig. I). The initial conriguration corresponds to the structure 

with the cross-sectional areas Dr elements ~ and to the states of' , 
strains &~ and internal rorces ~= A.a~ (a~ denotes stresses) due 

\. .. \. \. \. 

to the derined external load. Analogously, the modiried 

conriguration corresponds to the structure with the modiried 

cross-sectional areas Dr elements A~ and to the states Dr strains 
M .JI MM' 

&. and internal rorces K. = A.a. due to the same external load. 
\. .... \. \. 

On the other hand, the distorted conf'iguration corresponds to 

the unchanged initial material distribution A~, to the states Dr 

strains &~ and internal rorces ~ = A.a~ due to the unchanged 
\. \. \. \. 

external load superposed with some additional load through virtual 

distortion state &:. 
The concept Dr simulation Dr redesign through virtual 

distortions requires the equivalence Dr derormations and internal 

rorces Tor both conTigurations: modiTied and distorted: 

&~ = & (1) 

'\ ;;;; R 
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TI.e ... e-fo ... e, -fo ... each ele.nent the simulation condition takes the 

-follo .... ing -fo ... m: 

A E (G ° G (2) 

.... he ... e E, denotes Young modulus and 0 = E, (G, -&~) desc ... ibes the 
• l '".." 

constitutive relation -fo ... elastic body .... ith distot-tiulls. 

Let u~ decompose the -final 

de-formations: 

R 1. r. D .. ° + 1. 
I!', G, + G, G, G, , , , J 'J J J 

(modi-fied, disto ... ted) state o-f 

(3) 

.... he ... e R denotes the ini t tat de-fo ... mations caused &, in the initial , 
con-figuration o-f the structure by distortions &~ and D" denotes , 

R'J 
the in-fluence mat ... ix desc ... ibing initial def'ormations I!', caused in , 
the element i by the unit distortion 1!'°=1 imposed to the 

j 

element j. 

Substituting Eq.2 to Eq.l the simulation conditions take the 

f'ollo .... i ng f'orm: 

B .. 
0 + ( .. 1. 

0 (4) e, e 
'J J 

.... he ... e: 

B .. = ( .. D .. + 6 .. 
'J 'J 'J 

( .. (AN - A, ) / A, , , , 

6 .. the 
'J 

Kronecker symbol. 

Having determined the inf'ILience matrix D .. , all modi-fications of' 
'J 

structural def'o ... mations due to st ... uctu ... al ... edesign (determined by 

the vector (i.) are desc ... ibed by the initial state of' ·def'o ... mations: 

&~=l: D. ,&~ , whe ... e eO has to be calculated f' ... om the simulation 
'J ~ J j 

equation (3). 

The computational ef'-ficiency of' the presented method arises 

f'rom the f'act that the technique o-f local corrections to the state 

of' stresses and def'o ... mations is considerably cheaper then renewed 

global analysis (with stif'f'ness matrix ref'ormation). The e-ff'ect of' 

saving of' the computer time is particularly high if' redesign 

modif'icates only a small part of' structural elements. 
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initial solution L 
0'" I e , 

L 

.~ 0' = 0' 
1. 

& = & 

I 
ini'luence mal:rix generation I 
D 

[;=""','/<. 

e = t + 6t I 
~ 

'i: simulation of -finite dii'ferences oi' ( ,~ 
;.., B«(')&o, + I.;'e 

L = 0 eO, 

~ 
.. 

:1 ~ I.J VDI"I Simulation 

" e: = £.L~+ l:O :&0;' 
CJ , • 'J J 

U) u 
J-. ' +E, l: <D, 'C: i.J o~ = - 6 ) ° e , ' 

~ ~ 
, , • , j • J J 

(j ,~ ~ 
I.JG 6f = f(O",e',I.;') - f(O',e,l.;) I ..... Q' 

" ~ 

,... 
t: 
,... 
.§ 

gradient calculation and modii'ication 
QJ of design variables I.; = I.; + AI.; 

~ 

H I AI.; I - 0 I J END I I 
~ 

simulation of modii'ied structure 

B<t:>e ° + I.;e 
L = 0 ° .. e 

I VDM Simulation 
L 0 

e,= e, + l:D. ,e, 
'--

, • 'J J 
L + E,l:<D, , 6, .> 

0 
0',= a, - e, 
• • , 'J 'J J 

Table 1 Tho a~sorithm 0/ optimal r9dOsisn simulat9d by VDH 
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2. Algorithm uf Optimal Redesign Simulated by VDM 

Let us consider 

constraints): 

l objec"tive f'unctionals 

.=1.,2, ..• l 

j=1,2, •. , k 

where k denotes the number of' design variables. 

(and sidli! 

(5) 

The main computational cost of' the 

corresponds to the gradient calculations 

optimization process 

f'or the 

f'unctions and side constraints. In thli! presellted 

objective 

approach 

(cf'.Table 1) the gradient calculation is done by the f'inite 

dif'ference method simulated by virtual distortions. The same 

VDH simulation procedure is used to simulate subsequent design 

modif'ications and gradient calculatiolls. 

3. Simple Truss Example 

Let us discuss the simple truss example shown in the Fig.I. 

The numerical process of' structural redesign to minimize the 

volume of' material: 

~OcnL __ 
p p 

-1. 

J A 

1 
a) 6) c) 

P 

Fig. 1 Example 0/ truss structure: CaY initial con/isuraLion; 

Cb~ modified C/inal~ con/isuration; Cc~ distorted con/isuration 
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i A.u. [lOON] &. 
~ ~ ~ 

Ini t ial conJit/ura.t ion: 

1 5.:578 0.056 

2 -4.422 -0.044 

3 -4.422 -0.044 

4 6.254 0.063 

~ -7.888 -0.079 

Final conJitfUration: 

1 10.000 

2 0.000 

3 0.000 

4 0.000 

5 -14.142 

0.052 

-0.039 

-0.039 

0.039 

-0.052 

313 

A. [cm] 0 A.O'~[lOON] e. 
~ ~ ~ ~ 

1.0 0.0 0.0 

1.0 0.0 0.0 

1.0 0.0 0.0 

1.0 0.0 0.0 

1.0 0.0 0.0 

1.923 -0.047 4.422 

0.000 -0.039 4.422 

0.000 -0.039 4.422 

0.000 0.039 -6.254 

2.720 0.092 -6.254 

Table 2 Results oj simulation process Jor the truss structure 

min V 
(6) 

V = l:: 1. AM = l:: 1. A. ( 1 + (, ) 
\. ,,\. \. \''' . 

subject to side constr'aints: 

I u .. I !; u (7) 

was computed assuming A.= •• =Ao= lcm2 , P=1000N, E1 = •• =Eo=100MPa, 

u = 5.2MPa. The results are shown in Table 2. 

4. Ca.putetional E~~lcl.ncy of Sen.ltlvlty Anely.l. 

Let us consider an objective ~unction 

of = of ( u, ( ) (8) 

and its derivative 

d-fld( = iH/lI( + ZT du/d( (9) 

where z is a vector with components z .. !!ofl!!u .• .. ~ 
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The -first Lerm in Eq. (9) is usually zer·o or easy to o~tain. so we 

discuss only the computation o-f the secund term. Dirrer·entiatillg 

the equilibrium equatiuns -for a rinite element model: 

(10) 

wi th respect tu t.: we oota111: 

K du/d; "" dplll; - elK/til;" u (11 ) 

or·, pt-ellluiliplyiny Eq.ll by ZTK-· we obtain: 

( 12) 

Calculation Or ZTdu/d; may be perrormed in two di-fferent ways 

(cr.Ref.2); 

a) the direct sensitivity approach consists o-f solving Eq.l1 -for 

du/~ and then calculating the sLalar product with z, 

b) the adjoint sensitivity approach determines an adjoint vector 

~ as the solution o-f the system 

K ~ = z ( 13) 

and then calculates dr/d{ rrom Eq.9 written in the rorm: 

d-fld{ 8-f1iJ( + AT ( dp/d; - elK/~ u ). ( 14) 

The cost Or gradient calculation can be now estimated 

(neglecting the cost ur K' calculation). Using subscripte m to 

denote the number Or multiplications and a to denote the number Or 

additions the cost Or direct sensitivity analysis is equal: 

kIn 2 + n2 ) -for calc.ulatiun Or K'u 
m 0. 

a) kIn 2 + n2 ) -for calculation Or du/d;=-t<-1 (K'u) 
m Q 

k I (n +n ) -for calculatioll of' drld;=z du/d; 
m 0. 

where k is the number of design variables, is the number of 

objective f'unctions and n is the number Or degrees Or -freedom. 

Simi larly, the cost of' adjoint sensitivity analysis is equal: 

kIn 2 + n2 ) -for calculation o-f K'u m 0. 

b) lIn 2 n2 ) -for calculation of -1 + ~=K z 
m 

kl (nm + n~) -for calculation o-f d-fl c:t =-h, T (K:1,&). 
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On the uU,er halltJ, t.he numer'ieal cost O'f gradient calc.ulation by 

the VDM simulation can be estimated as -follews (m~glecting the 

cest o-f initial calculation o-f the in-fluenc:e tnatr-ix D ): 
~j 

k k +ka (k + k 
m m 

c) k(k 2 + k? ) 
m .. 

kIn + n ) 
m .. 

k I (n + n ) 
m a 

) 
Q 

t.he crude appr-uximat.ion -fur t.he solution 

o-f the simulatien problem B«(,)~O,=-(,!:.L 

whet' e r,' =r, + or, 
-for calc.ulaticn u-f u'=D&<>' 

-for calculation o-f dufur; = (u' -u) lor, 
-for calculatioll o-f d-f f cr;" =M: f hu duf cr." • 

Now, we call estimate whell the LUSt. u-f VDM simulatiun is cheaper 

then another sensitivity appreach. This estimation determines the 

cee-f-ficient a such, that -for k < an the VDM appreach is mere 

econemical. I-f k<l then the direct sensitivity appreach is mere 

ecenemical than the adjoint one. Then, the comparison o-f costs o-f 

cemputations (eg. taking only number e-f multiplications intO' 

acceunt) a) and c) leads to' the -fellowing inequality: 

(15) 

We can check that -for n=100 the solutien e-f (15) is 01.<0.27 and 

-for n=1000 the sDlutien is 01.<0.12. Analogously, i-f l(k then the 

adjoint sensitivity approach is IIIore economical than the direct 

one. Then, the comparison o-f cests Df' computations b) and c) leads 

to the inequality 

( 16) 

We can check that -fer n=100 the solulion of' (16) is 01.<0.25 and -for 

n=1000 the selution is 01.<0.10. 

Summing up, it can be said that -fDr redesign process with 

only 10 - 25% o-f medificable elements the VDM simulation is more 

econDmical then the other sensitivity analysis methods. 

It is worth Ileting that the response Df a structure -for redesign 

is autematically calculated during t.he VDM sensit.ivity analysis 

and no extra computation is needed. 
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5. Conclusions 

The VDM simul«tion approach is Pdrticularly ef'f'eLlive 

technique if' a small Ilumller· of' design variables is mot.lif'icaletJ in 

a repetitive iteratiun pr·ucess. For example, a shape cuntrul uf' 

slrUl.:tural buundary t:an be lreated as a I-ln.Jbl~m with d small ar·ea 

of' B,otJif'it:able lIoundary layer. 

III the case of' the struclure with all modif'ic.:allie elemellls 

the non-gradient approach with virtual uistot"tions genet·aled in 

all structural elements in an iterative w«y call be applied. For 

example, lhe idea of' iter·alive optimal remodeling with 

'''dteridl f'rum over·loat.led to underloaded spols (Ref'.3,4) 

used. 

shif'liny 

can be 

The VDM simulation technique allows to combine various 

modif'ication problems within the same approach. For instance, the 

problem of' optimal plastic design involves simultaneous simulation 

of' modif'ications of' both material distribution and constitutive 

properties <permanent plastic de-formations) cf'.Re-f.5. 
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1. Introduction 

1.1 Optimal structures in engineering 

In many applications of structural engineering, the designer wishes to 

achieve an 'optimal' structure. 'Optimal' is then spoken about in 

terms like 'minimum weight with maximum performance' or 'minimum costs 

with maximum performance'. The first and most strict of those demands 

defines light-weight structures, like they are being used in the air

and spacecraft engineering, where things have to be airbourne and 

money does (almost) not matter. The second of those demands defines 

light-weight structures of structural engineering (tanks and silos, 

trussed roofs, profiled sheeting), where things should not move after 

site-erection and money matters a lot. 

Both of those have created light-weight structures, which are so in

credible thin-walled (shells with wall-thickness vs. diameter far less 

than 1/500 /10, 14/) and slender, that they are likely to buckle elas

tically and thus besides strength-design creating a new class of prob

lems in engineering mechanics /9, 11/. 

1.2 Optimal structures in nature 

Of course nature has developed light-weight structures, some of them 

have become proverbial. An egg shell has a ratio wall-thickness vs. 

diameter of about 100, and a part of a spiders leg (tibia), which is 

almost a perfect circular cylindrical tube, has a ratio wall-thickness 

to diameter of about 1/20 to 1/60 /4/. 

One can see from those examples, that thin-walled structures of nature 

are almost one order of magnitude thicker than thin-walled structures 
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of engineering. Thus nature avoides problems of elastic instability, 

which under load control might cause sudden and catastrophic collapse. 

And if it has to be an extreme light structure, it will be not made up 

of a single, very thin-walled shell: A bundle of tubes will make up a 

relatively thick-walled non-isotropic shell, so that neither the glo

bal dimensions of the shell, nor the measures of the single tubes are 

'thin-walled', at a total weight almost as low as of the isotropic 

shell. 

Up to now, we are not able to build such structures at due expenses. 

We do build sandwich structures, which serve well by transferring 

shearing forces through a comparable thick foam core whith comparable 

poor mechanical properties, where excellent bending stiffness is pro

vided by high-strength deck liners. But to build a structural element 

like a bone of a birds wing, sturdy by its outer dimensions, but ex

treme light by its inner filigree-trusswork, without any of those thin 

'needles' being in danger of buckling - that is far beyond our possi

bilities in manufacturing. 

This paper discusses briefly some aspects of optimal structures in 

engineering from a civil engineer's point of view. 

2. Criteria 

In this section some criteria are outlined, with respect to which a 

structure could be optimized. 

2.1 Loading 

When designing a structural component, one has to have a certain im

pression of the kind of loading which will act onto this part. If the 

complete load pattern is known, the structure can be designed to be 

optimal for this load pattern, e.g. constant stress will be governing 

each part of the component. 

In many cases however, it is unexpectedly difficult to determine the 

actual load pattern: 

- The loading of the structure may be of stochastic character, e.g. 

due to wind or granular goods inside a silo (see /8, 14/). If the 

stochastic properties are known very well, it is at least possible 

to predict a certain propability for the crucial combination of 
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gusts, that will cause maximum bending moment in the shaft of a 

guyed mast /15/. 

- Load is induced by adjacent structural parts. The actual loading 

pattern is then determined by the design and realizal:.ion of the 

joints. Remainders of friction, where a hinge is designed, uneven 

foundations, where continuous support is designed, as well as 

geometric imperfections and misalignment /12/ can change the assumed 

loading pattern completely. 

2.2 Durability 

2.2.1 Fatigue 

If the loading of a structural part is varying in time, fatigue prob

lems become important. In order to prevent early fatigue cracking, it 

is essential to avoid geometrical notches. This means e.g. for welded 

steel structures, to design smooth transitions at different wall 

thicknesses, and to use flush-ground butt welds only, where for static 

loading untreated fillet welds would do /13/. 

2.2.2 Corrosion 

The medium, which is acting onto the structure (as primary action) or 

which is simply surrounding the structure but affecting it (as second

ary action), can require special considerations. In such cases, where 

it is not possible to chose a resistant material, the structure has to 

be coated, which again calls for a special type of design: smooth sur

faces, all gaps between adjacent parts sealed or tight-welded, all in

accessible areas closed airtight - where the choice of a proper coat

ing system is another problem. 

2.3 Serviceability 

The deflections of a structure must be limited, even if (at first) 

strength is not affected (water ditches on roofs, second order effects 

with columns). Eigenfrequencies of building components have to be kept 

within certain ranges, in order to avoid people feeling uneasy. 
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2.4 Maintenance 

Maintenance can be very costly during service life of a structure, 

e.g. painting works for a fine-skeletal steel structure like the 

Biffel-tower. This requires small surfaces to be repainted, all parts 

to be easily accessible, possibilities to change parts during service 

(e.g. guying cables). 

2.5 Quality Control 

Very often it is neglected, that even the necessities of quality con

trol affect the designing process of a structure: 

- If a designer decides to use prestressed concrete for a bridge, he 

must be aware, that prestressing is a fine and efficient technology, 

if the cables are properly grouted after tensioning. If this is not 

ensured by quality control measures, the high-strength wires, which 

are very sensitive to stress corrosion, will be likely to fail 

within a few years. 

It is well known, that shot peening induces compressive residual 

stresses in the surface of a weld and thus inhibits the development 

of cracks with fatigue loading. Therefore this might be used in a 

controlled manufacturing process of e.g. machine parts, but up to 

now it is impossible to use this for welded steel construction, be

cause there is no way to check the state of treatment of every 

single weld (comp. /16/). 

3. Structural Safety 

3.1 Design-Load and Purpose 

One purpose, which the designer defines as (main-)task of the struc

ture, is followed in designing the structure, which means to model 

loading pattern and structural response only uni-dimensionally /17/. 

However, most structures have to serve several purposes (of declining 

importance), and the designer is likely to disregard SOUle, which later 

on might prove to be important for the performance of the structure. 

In 'reality' various influences, which are seldom known from the very 

beginning of the design process, cause the requirements for the struc-
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tural behaviour to be multi-dimensional. Only a wholistic approach to 

the structural task with a thorough consideration of all 'ifs' or 

'buts' can prevent from 'forgetting' one important aspect while opti

mizing with regard to another. 

3.2 Shape 

If one optimizes a structural member for compressive forces and/or 

bending in random direction, one might end up with a relatively thin

walled cylindrical shell. This shape, optimal (almost only, see /3/) 

by design, exhibits a high capability to bear compressive stresses in 

compression and bending. 

Unfortunately, we are not able to manufacture such optimal designed 

shapes under usual conditions of steel building. The sheets get pre

buckles and residual stresses by milling, misalignments by assembling, 

and more prebuckles and residual stresses by joint-welding. Again un

fortunately, a cylindrical shell is extremely sensitive to these im

perfections (even if these are within the requirements of the respect

ive codes /12/), so that the overall bearing capacity can be reduced 

as low as 15 % compared to the designed 'optimum'. 

3.3 Material 

In 'conventional' design, engineering materials are modelled mostly as 

homogenious, isotropic continuum. This means, that makroscopic the

ories are used for the constitutive laws, which are sufficient for ap

plication with most metal structures. Even fiber-reinforced materials 

are treated this way: if the fibres are non-orientated, isotropic 

properties are assumed, and if the fibres are orientated e.g. in dif

ferent layers, each layer is treated as an orthotropic, but again ho

mogenious continuum (/1/, compo /2/). 

Real'materials are non-homogenious, e.g. a weld with micro-pores (or 

any other admissible defect) or a steel that has been subjected to 

ageing, which means a decomposition of the elements and consecutively 

different properties of the grains themselves and the grain bound

aries. 
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4. Conclusions 

Focussing to the shape-optimization of an engineering structure, one 

is likely to concentrate on one single loading pattern, which is held 

for the main loading case. Giving shape to the material along the flow 

of forces in a way, which leads to uniform stress in the entire struc

ture, and reducing the total mass in a way, that this uniform stress 

is equal to the admissible stress of the material and the actual slen

derness, results in an 'optimal' structure. 

However, if this structure is really optimal (which means best poss

ible, literally), any variation will make the structural performance 

worse, whereby variations might be slight changes in the loading 

conditions as well as slight differences between the manufactured 

shape and the designed shape. Indeed, the structure has been optimized 

successfully, but it has become a very sensible, single-purpose 

structure - not just of the kind we try to achieve in engineering 

usually. 

Therefore, non-optimal structures in terms of shape-optimiL:ation are 

multi-purpose structures, which are robust against inevitable toler

ances in manufacturing and changes in loading. They are likely to be 

optimal in a global sense of economics, where all costs of design, 

manufacture, quality control, operation and maintenance are under

stood, including certain levels of risk assessment. 
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APPLICATION OF THE CAO-METHOD TO AXISYMMETRICAL STRUCTURES 

UNDER NON-AXISYMMETRICAL LOADING 

Abstract 
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Harmonic elements with Fourier series expansion for the displacement functions are 

commonly used for axisymmetrical structures under arbitrary loading. Several 'General 

Purpose FE-Programs' offer this option. The application of these elements can be extended to 

the CAO-method. When axisymmetrical structures under arbitrary loading are shape

optimized, the designer normally restricts any geometry modifications to the r-z plane, i.e. 

the axisymmetrical geometry must be maintained. This paper shows the application of this 

technique without any FE-source code modification. The main advantages are: 

1. 3D-FE computations are avoided. 

2. The method yields less conservative, I.e. more accurate solutions than plane strain 

models. 

CAM-manufactured 2D-prototypes are fatigue-tested showing a striking increase in fatigue 

life. 

Usage of harmonic elements 

Many structures in the engineering world can be classified to be axisymmetric, with non

axisymmetricalloading. The application of axis ymmetrica I elements with Fourier series ex-
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pansions for the displacement components (u, v, w) in a cylindrical coordinate system (r, z, 4» 
is widely seen in finite element idealizations for these kind of problems. The reason for this is 

the significant saving of computing time compared to 3D-idealizations. 

For simplicity, let the general loading be replaced by an even Fourier expansion, i.e. the 

loading is symmetrical with respect to the r-z plane. This assumption leads to the following 

displacement functions: 

u (r, z, <1» == )~ un (r, z) ros nq, 
n:::O 

v (r, z, <1» == L V 11 (r, z) ros nq, 
1):;::0 

w (r, z, <1» == L W n (I', z) sin n<j> 
n=O 

(la) 

(lb) 

(lc) 

A complete Fourier series expansion for a loading without any restrictions differs from eq. (1) 

by additional antisymmetrical terms with respect to the r-z plane (4) = 0), see for example 

[1]. (The terms "symmetrical" and "antisymmetrical" should be understood with respect to 

the ¢ = 0 plane.) 

A fillet shoulder under a lateral force or moment is an example with an axisymmetrical 

geometry and non-axismmetrical load, see Fig. 1. The fillet radius is constant and thus not 

optimal with respect to a homogeneous stress distribution at the free surface. The CAO

Method is an efficient software tool to remodel the fillet surface yielding a stress 

concentration factor near 1. This method is extensively described in [2] and [3]. 

To represent accurately the moment loading by Fourier expansion, the sum in eq. (1) needs 

only two terms from n = 0 to n = 1, whereas the lateral force needs indefinitely many terms 

theoretically. However, in practice two terms are sufficient for the latter case as well, 

because the higher order effects at the position of the singular force diminish at remote 

locations due to the principle of Saint Venant. If the lateral force would act directly in the 

fillet radius, then two Fourier terms would not be sufficient, of course. 

It should be emphasized that almost all practical applications of simple bending of 

axisymmetrical structures are represented well by the zero and first order harmonics if 

forces are applied remotely from the region to be stress-optimized. Thus, there is only a small 

computational penalty to be paid compared to plane strain or plane stress idealizations. This 

penalty is drastically overcompensated by the simulation of real 3D effects with the Fourier 

approach. 
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Demonstration example 

The fillet shoulder shown in Fig. 1 is already presented in [2] for the plane case. This problem 

is reinvestigated to account for the axisymmetrical geometry. The starting point of stress 

optimization is characterized by Tab. 1: 

Theory 141 Abaqus 15) 

Plane strain 1.46 1.34 

Axisymmetrical 1.32 1.24 

Table 1: Stress concentration factors for fillet 
shoulder under pure bending with geo
metrical data from Fig. 1. 

The difference between theory [4] and the Finite Element analysis results [5] is mainly due 

to the application of bilinear 4-node elements, which are to be used with the CAO-Method. 

The weak capability of this element type for resolution of stress gradients is not critical. As 

long as there is a stress concentration of the right order, this "driving force" will effectively 

lower stress concentration. For the final and homogeneous stress pattern the simple 4-node 

element is adequale as stress gradients are eliminated or at least drastically reduced. 

Fig. 2 shows the tangential stress along a surface coordinate before and after optimization. 

The eliminatiun of any stress concentratiun was achieved after 6 iterations for both plane 

and axisymmetrical idealization. The optimized surface, however, differs for these cases as is 

shown in Fig. 3a) and b). A plane strain idealization for axisymmetrical structures under 

bending yields conservative results at least for the fillet shoulder. The additional material 

requirements in the fillet region are overestimated, however. The Fourier approach predicts 

less material requirements and is therefore more accurate. 

Experi mental verification 

For the experimental verification of the CAO-method the 2D-problem of a bending bar with 

narrowing cross-section was chosen, which in [2] is described in more detail. Starting from a 

non-optimized form with a diameter ratio of DId = 4 and a circular transition with a radius 

of R = 0.12 d between the cross-sections, a shape-optimized form was designed by the CAO 

method resulting in a much smoother transition region. Thereby, the local peak stress in the 
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transition could be reduced after a few it.eration cycles from 1.8 to 1.1 times t.he magnitude of 

the externally applied stress. 

A series of specimens having the non-optimized or shape-optimized design were 

manufactured by CAM from t.he German structural ~teel St 37-2 with a yield ~t.rength of300 

MPa. Fig. 4 shows an example of a non-optimized and a shape-opt.imized specimen. Both 

t.ypes of specimens were prepared by spark erosion to an average roughness of Ra :5 2 lIm. 

Nevertheless, the shape-optimized specimen revealed a slightly worse surface finish as t.he 

smooth transition has been produced discontinuously in the form of small stairs, due to the 

limited capability of the spark erosion machine. 

The experiments were carried out in a servohydraulic testing machine under bending fatigue 

load. Fig. 5 shows a photo of the testing device. The specimen is clamped at one side and 

loaded by a t.ransversal force at the other side. The tests were performed under load control 

with a sinusoidal load shape at a frequency of 30 cycles/s. For the cyclic loading a constant 

load ratio of 0.1 was chosen with a maximum compressive load of 11 KN acting at a distance 

of 38 nun from the circular transition. The tests were run until a limiting deflection of the 

specimen was reached in consequence of a crack propagating into the specimen. Table 2 

shows the results of the tests. 

Non-optimized specimen Shape-optimized ~pccimen 

1.540.800 10.000.000 (*) 

1.877.300 10.000.000 (*) 

2.045.400 10.000.000 (*) 

2.417.800 10.000.000 (*) 

2.608.700 10.000.000 (*) 

3.205.900 11.000.000 (*) 

3.539.800 90.000.000 (*) 

(*) did not fail 

Table 2: Number of cycles to reach a limiting deflection 

While t.he non-opt.imized specimen failed only after an average value of2.500.000 cycles (see 

Fig. 6), the shape-optimized specimen withstood at least 10.000.000 cycles without visible 

crack initiation. This means that the fatigue life of the bending bar has been prolonged by a 

factor larger than 4 by means of the CAO- method. In one ca~e, t.he ~pecimen was loaded with 

the same stress until a 36 times longer life was reached without visible crack initiation. In 

order to initiate a crack in the shape-optimized specimen, the maximum cyclic load had to be 
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increased by 36 percent and the specimens withstood another 2 to 3.5·106 cycles until they 

reached the limiting deflection related to crack presence. 

Conclusions 

1. So-called harmonic elements may facilitate the shape optimization of axis ymmetrica I 

structures under non-axisymmetric loading by drastic reduction of mesh sizes. 

2. For reasons of simplicity, plane samples of a shape-optimized shoulder fillet were fatigue 

tested by swelling bending in the laboratory. Significant increase in fatigue life makes 

worth the effort of shape optimization especially if the simple and straight forward CAO

method is used. 
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aJ b) 

Optimized lillet shoulder withlJut allY strc:':, cunccntration for the a) plane strain 
and b) axisymmetrical model after 6 iteratiulls. Shaded region: material 
requirement for optimization. 

non - optimized 

Ntdltlptimized and shape-optimized specimen 
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l"ig.5 Tc~tl ng device 

Fig. 6 CrHck in the tensile side of the non-optimized ~pecilIlell. 
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NUMERICAL SIMULATION OF INTERNAL AND SURFACE 

BONE REMODELING 

Nomenclature 

ex, p, y, k, s, UnO 

Cit' Cxl, Ci2 etc. 
~P 
~X 

E 
Eij 

°ij 
Pa 
Pc 
U 

Ub 
Ueff 
Un 

Introduction 

TJ. Reiter, F.G. Rammerstorfer and HJ. B6hm 
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Modeling constants 
Remodeling parameters 
Change of apparent density 
Growth Increment perpendicular to the sUl'face 
Young's modulus 
Strain tensor 
Stress tensor 
Apparent bone density 
Density of cOl'tical bone (upper boundary) 
Strain Enel'gy Density (SED> 
Bulk SED 
Effective SED (stimulus) 
Equilibrium SED 

Like any living tissue bone undel'goes a steady process of material fOl'mation and resorption. 

Special bone cells (Osteoblasts) deposit new material whel'as others (Osteoclasts) are removing 

older bone, creating a balanced state of bone form and architecture as far as mature, healthy 

and physiologically loaded bone is concerned. It has long been recognized that these so called 

bone remodeling processes are mainly controlled by the mechanical loading environment to 

which a bone is exposed (Wolff 1892), giving bone tissue the ability to adapt and even optimize 

its surface shape as well as its internal structure in respect to its functional requirements. 

Changes in the actual stress/strain pattern within the bone will stimulate pronounced cell 

activity I'esulting in a new equilibrium state. This process of functional adaptation enables 

bone to endure its mechanical loading with a minimum amount of mass, but on the other 

'hand, as clinical practice shows, it is often detrimental to the long term success of prostheses 

and implants as used in orthopaedic or dental surgery. Thus the development of methods for 

predicting the adaptive changes in bone could be of gl'eat benefit for clinical applications. 

Although during the last decades a gl'eat deal of theoretical and experimental work has been 

done to explain the physical and biochemical mechanisms which transmit the mechanical sti

mulus (local stress and/or stl'ain state) into cell activity (e,g. Kufahl and Sub rata 1990; Scott 

and Korostoff 1990) the pl'ocess of functional adaptation of bone is not yet fully understood, 

Thus attention has been focused on the development of phenomenologically based methods, 

relating mechanically derived stimuli such as stress- or strain tensors, v'Mises stresses etc, 



www.manaraa.com

334 

to local bone growth rates via simple mathematical equations (Frost 1964; Cowin et al. 1985. 

1987; Hart 1983; Carter et al. 1987. 1989. 1990; Huiskes et al. 1987). The optimization strategy 

on which bone remodeling and functional adaptation is based can advantageously be used in 

the design of technical structures. too. This offers a good tool especially for structures like 

composites. which allow density and stiffness variation in a wide range. 

Mathematical Model For Numerical Simulation 

Of Adaptive Bone Remodeling 

In accol'dance with Carter et al. 1987 and Huiskes et al. 1987 the stl'ain energy density (SED) 

U. which is given by 

or the bulk SED 

(2). 

which better reflects the strain enel'gy actually stored in the minel'alized bone tissue. is taken 

as an adequate mechanical stimulus for adaptive bone I'emodeling. To take into account the 

multiple loading conditions and individual loading time histol'ies experienced by a bone in the 

course of a typical time period an appropriate superposition of a number of discrete load 

cases is considel'ed. The individual SED-distributions are weighted accol'ding to the conespon

ding number of load cycles (Carter et al. 1987): 

C n. k Uk 
Ueff = (~-=n U(b)') 

it· 
(3). 

Here c stands for the number of load cases. ni is the number of loading cycles corresponding 

to load case i. nt is the total number of loading cycles and k is a modeling parameter weight

ing the degree of influence of load magnitude and number of loading cycles. respectively. 

Following the theory of adaptive elasticity as initially developed by Cowin et al. and proposed 

in a slight modification by Huiskes et al .• the difference between the actual effective strain 

energy density Ueff. and a site specific "homeostatic SED" Un. which is calculated by 

(4). 

I'epresenting the balanced state of no bone remodeling. is utilized as the feedback control 

variable fOl' determining adaptive changes in bone shape and apparent density, This deviation 

must exceed a certain threshold level in under- or overloading to cause remodeling activity. 

so that bone is assumed to react "lazily", This way analogous equations for internal and sur

face remodeling in a given point can be formulated as illustrated in fig.l: 

Ueff< Uin (l-si) J 
Uin (l-si),;Ueff,;Uin (l+Si) 

Uin (l+si)< Ueff < Ui max 

Ueff;" Uj max 

(5) 
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Ueff< Uxn (1-sx) J 
Uxn (1-sx ) ~ Ueff~ Uxn (1+sx) 

Uxn (1+sx ) .< Ueff < Uxmax 

Ueff~ Uxmax 

(6) 

The index i marks intel'nal remodeling, while the index x is used to identify surface remodel

ing, L\p stands for the change in apparent density and (). X is the surface growth perpendicular 

to the surface, U max is the maximum SED level to which bone can be exposed without caus

ing actual damage to bone cells yielding overstrain necrosis, 

. Bone Deposition 

Bone Resorption 

Fig. I The relationship between the actual SED, Ueff' and the 

bone remodeling reaction. 

Implementation 

An iterative computer procedure has been implemented to allow quantitative predictions of 

adaptive bone remodeling. The stress and strain fields within the bone tissue and at the sur

face of the bone, needed for the remodeling scheme formulated above, al'e derived by linear 

finite element analysis <DLEARN-Hughes 1987), which has to be performed for each loading 

case in each timestep. In each timestep the FE-repl'esentation of the model is adapted according 

to the cUI'rent distribution of Ueff. 

According to equ.(4) the values of Ueff in the surface nodal points are used to adapt the 

col'tical thickness of the bone by relocating these node I points, thus simulating surface bone 

remodeling. In order to avoid numerical instabilities resulting from excessive mesh distortion, 

the nodal points inside the cortex are also moved in a propel' manner. To simulate internal 

adaptive remodeling within the bone tissue the apparent element density Pa of evel'y finite 

element is altered as pl'escribed by equ.(3l. Following an appl'oximation proposed by Carter 

and Hayes 1977 the Young's modulus of each finite element can be calculated as 

E = [3 p)' (S), 

tl'eating cortical bone simply as densified trabecular bone differing only in porosity. 
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Start Model I load magnit. and 

Fig. 2 Flowchart of the adaptive bOlle remodelillg algorithm 

Test Problems 

Several test pl'oblems have been investigated demonstrating the applicability of the numerical 

approach pl'esented. 

Density Distribution in the Proximal Femur 

Stal'ting with a uniform apparent density configuration, the distribution in the proximal femur 

is predicted. Three different typical loadcases, which follow Huiskes et al. 1987, are con

sidel'ed , resulting in a bone density distribution (fig. 3) which is in good agreement with those 

found in real femura. 
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-x 

Fig. 3 Distribution of apparent bone density in the proximal femur, obtained 

by computational simulation 

Clamped Beam 

To show the principal applicability of the method to structural optimization in engineering 

mechanics, in particular, to problems where both shape and material properties are variable 

(e.g. composite structures), the optimization of an initially homogeneous, uniformly loaded 

beam clamped at both ends (fig. 4) is investigated as a ZD-plane stress-model. 

Constant Load 

h 

LIZ 

• ____ X2 

Fig. 4 Beam under constallt load clamped all both sides 2D FE-model 

(only the left half is modeled). 

The effects of pUI·e internal remodeling, pure surface remodeling and combined internal and 

surface remodeling have been investigated. The use of pure surface remodeling tends to equalize 

the SED along the ft-ee boundaries only, yielding a shape similar to a beam optimized under 

stress constrai nts (see fig. S.l. 
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Fig, S Adaptive optimization of a clamped beam under constant load: Distribution 

of SED after pure surface remodeling, 

In the case of pUl'e intel'nal remodeling bone mass and stiffness al'e concentrated near the 

clamped ends and at the surface close to the center leading to a density distribution simi/al' 

to an I-beam (fig, 6l. 

Undel' combined I'emodeling quite intel'esting shape and density distribution configurations can 

be derived. depending on the actual values of the remodeling pal'amelel's (see fig, 7l. 

Fig, 6 Adaptive optimization of a clamped beam under constant load: Distribution 

of apparent density after pure internal remodeling, 
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Fig. 7 Adaptive optimization of a clamped beam under constant load: Distribution 

of apparent density after combined surface alld internal remodeling. 

Density Distribution around a Single Tooth 

A further example belongs to the field of dental surgery. The formation of bone mass around 

a natural tooth under normal chewing loads (Siegele 1989), supported in the jaw-bone via the 

periodontal membrane is predicted, starting from a configuration of homogeneous density, 

using a 2D-plane FE-mesh. As shown in fig. 8, bone mass is concentrated around the alveolus, 

building the well known cortical crest surrounding every single tooth. 

Fig. 8 Distributioll of apparent bone density arround a single tooth (Finite Elements 

representing dental material have not been plotted). 
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Conclusion 

Considering the highly idealized nature of the FE-models used, the results presented in the 

previous section are in remarkably good, but nevertheless only qualitative agreement with 

natural bone density distributions. To obtain accurate predictions of in vivo bone remodeling 

responses in a quantitative way as needed to achieve clinical I'e levance the complexity of bone 

geometry and architectul'e (e.g. bone anisotropy, trabecular orientation etc.) has to be taken 

into consideration. Furthermol'e the mechanical loading environment as well as the site specific 

remodeling parameters have to be considel'ed very carefully, which may require further ex

perimental investigations. Numerical approaches to stress induced bone remodeling, combining 

well established methods of computational mechanics such as the FEM with phenomenological 

remodeling laws can help to increase the understanding of the stress-I'emodeling relation

ship in bone. Despite the fact that the clinical application of algorithms like the one presented 

here requires further intensive research, the ideas can be used to optimize structures made 

of materials with varying density and stiffness like composites. 
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ABSTRACT 

The present paper describes some engineering oriented approaches 

employed in structural shape optimization. A geometry-based approach has 

been used to integrate modelings of three phases, i.e. structural shape 

modeling, design optimization modeling and finite element modeling. The 

strategy of user's programming interfaces is proposed to deal with 

special application problems and make optimization program really 

flexible. The versatile sensitivity analysis is implemented with 

semi-analytical scheme, which is particularly efficient to compute the 

design sensitivity with respect to variations of load, temperature and 

boundary conditions caused by shape changes. These approaches have been 

proved to be practically valuable by the development and application of 

a general purpose pacl{age of micro-computer aided optimum design for 

structures, MCADS. Two application examples of MCADS, dealing with 

optimum shape design of continuum structures coupling fields of stress 

and temperature, are presented. 

1. Introduction 

The optimum shape design of continuum components and structures is a 

very important subject in the field of engineering optimization. There 

are many new features in this subject different from the traditional 

structural optimization [7]. For instance, design variables have changed 

from the size parameters of element cross-section to the shape 

pal'ameters of structural boundary. The optimization object is usually to 

reduce the stress concentration, but not to minimize the structural 

* The project supported by National Science Foundation of China (NSFC) 
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weight. In addition more types of finite element, such as membrane, 

plate, shell, brick and axisymmetric brick, etc., are needed for the 

structural modeling and analysis. These features present difficulties in 

sensitivity analysis, optimization algorithm and design modeling of 

structural shape optimization. 

To make the shape optimization of continuum structures really valuable 

for practical design processes of industry, efficient numerical 

techniques and gineering oriented approaches are still to be 

developed. First of all, the shape optimization should be based on 

existing commercial packages of general purpose FEM analysis. As such, 

complicated practical structures can be modeled with rich element 

library and various facilities of description of analysis attributes 

possessed in FEM packages. Sensitivity computation and structural 

modeling are two critical techniques for bridging optimization and FEM 

analysis, both of which are dependent upon the description and the 

control of structural shape. 

With the integration of FEM and optimization in mind, a general 

purpose program for structural shape and size optimization, MCADS 

(Micro-Computer Aided optimum Design system for Structures), has been 

developed from a commercial FEM program DDJ-W (6). The semi-analytic 

method of sensitivity analysis implemented in MCADS with DDJ-W as a 

black box is versatile for general cases, and particularly effective for 

the computation of such special kind of sensitivities with respect to 

variations of load, temperature and boundary conditions caused by shape 

changes. The structural modeling of MCADS is a geometry-based approach 

which makes direct use of engineering parameters and geometric 

curves/surfaces to describe structural shape, and introduces "natural 

variable" and "design element" into the shape optimum. design. 

The user's interface is a well known concept in software programming. 

Nevertheless, the applicable user's programming interface (rather than 

data interface) has been seldom provided in engineering softwares, 

especially in structural optimization. In engineering design processes, 

there are always some project-related problems can not been foreseen in 

programming phase and treated with an unified form. Therefore, an 

programming interface open to user is very useful to deal with such 

application oriented problems. 

These engineering oriented approaches implemented in MCADS and two 
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application examples of shape optimum design of continuum structures 

with coupling of stress field and temperature field have been 

presented in this paper. 

2. Geometry-based modeling for shape optimization 

The method of design modeling used in traditional structural size 

optimization is to build design model on the base of finite element 

model and take finite element parameters as design variables. This 

approach is not suitable for shape optimization of continuum structures. 

A geometry-based approach is proposed for the modeling of shape 

optimization with MeADS. Its main ideas can be explained as following: 

(1) Using engineering parameters and geometric curves/surfaces directly 

for the design modeling and shape description. (2) Integrating modelings 

of three different phases and carrying out them in the order of 

structural geometry modeling, shape optimization modeling and finite 

element analysis modeling. (3) Introducing "natural variable" and 

"design element" into shape optimization of continuum structures. 

In the geometric modeling, commonly used curves and surfaces, e.g. 

lines, arcs, splines and quadratic surfaces, have been employed to fit 

structural boundaries. Geometric parameters interested to engineers, 

e.g. radius and central position of arcs, coordinates of control nodes 

of splines, are selected as design parameters to describe and modify 

structural shapes, of which changeable parameters are chosen as design 

variables, that are so-called "natural variables". Then, the domain of 

structure is divided into some basic geometry entities, normally some 

regular shaped sub-regions. This domain division is aimed at shape 

optimization as well as finite element mesh generation. Those 

sub-regions near to changeable boundaries are defined as "design 

elements", and their edges and shape are controlled by the natural 

variables. Regular shaped sub-regions are also used as mapping-elements 

of automatic mesh generation with mapping method. The local part of 

mesh, load and boundary support within the design element have been 

updated during the shape optimization. 

The basic parameters of this modeling approach are geometric 

parameters which are most interested to engineering design. All of 

attribute information, i.e. shape design variables, finite element mesh, 
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loads and boundary conditions, are defined on the geometric entities and 

related directly to those control parameters of boundary curves and 

surfaces. Such a geometry-based modeling approach is engineering 

oriented and makes structural modeling as close to a real design as 

possible. The design modeling and analysis modeling of this approach 

have been unified. 

This integrated modeling approach has been implemented in MeADS via a 

mesh generator, MESHG. This program produces not only data of finite 

element model, and data of shape optimization model as well. For 

example, the cross-section shape of a train's wheel to be optimized is 

shown in Fig.!. Boundaries near the hub and the rim are not permitted to 

change, and the low- and up-boundary of middle part are optimized. We 

use spline curves to fit changeable boundaries, and chose z-coordinates 

of ten control nodes of splines as natural variables. The whole domain 

is divided into three sub-regions, i.e. mapping-elements for mesh 

generation, and the No.1 sub-region is design element. The mesh shown in 

Fig.2 and thermo-load caused by temperature field are updated with 

changes of the boundary shape. 

Fig.2 

3.Semi-analytic method for sensitivity analysis with load variation 

The sensitivity analysis is critical to link shape optimization with 

FEM analysis. The programming implementalion of sensitivity analysis is 

extremely time consuming for the shape optimization of continuum 

structures. The difficulty is mainly due to complicated relations 

between various types of elements and shape design variables. Although 

there are many papers discussing on various formulas of shape 

sensitivity analysis, programming implementation of versatile 
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sensitivity analysis is still important for practical application of 

shape optimization. 

The semi-analytic method of sensitivity analysis is an attractive 

approach for shape optimization based on general purpose FEM analysis 

packages [1,2]. It has both the advantage of easy programming of finite 

difference method and the advantage of efficient computing of analytic 

method. This approach has been implemented in MeADS using an structural 

analysis package, DDJ-W, as a half-open "black box". The half-open means 

that the data structure and the subroutine calling of DDJ-W are open to 

programmer of MeADS, but the program of DDJ-W itself has not been 

modified. Thus, all of elements and modeling facilities of DDJ-W have 

been maintained, and any structure that DDJ-W can analyze can also be 

optimized by MeADS. 

The accuracy of semi-analytic method in shape optimization has been 

deeply studied in [3]. An alternative forward/backward difference scheme 

has been accepted in MeADS to improve accuracy. The further study on 

improvement of semi-analytic method by adding second order correction is 

presented in [5]. According to our studies and experiences, the accuracy 

of semi-analytic method is usually enough for shape optimization of 

commonly treated structures modeled with elements such as membrane, 

bricl{ and axisymmetric brick. 

One important feature presented in the paper is that the semi-analytic 

method is particularly efficient to compute sensitivities with respect 

to variation of load, temperature, boundary conditions, etc., caused by 

shape change. This special kind of sensitivities is difficult to treat 

with analytic methods and is usually ignored. 

The structural analysis with finite element method is expressed as 

K U = P (1) 

and sensitivity of displacement U with respect to design variable 

calculated by solving the equations 

K~-~-~U ax. - ax. ax. (i=1,2, .... ,n) (2) 
111 

x.is 
~ 

In the traditional structural optimization, the term ap lax. is usually 
~ 

assumed to be zero, and Eq. (2) is simplified to 

K au_ - - ~U (' 12) (3) ax. - ax. 1= , , .... ,n 
1 1 

This assumption is acceptable in general cases of size optimization, 
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but it is no longer true in some cases of shape optimization. If load P 

relates to structural shape, for instance distributed pressure load and 

gravitational force, thermo-load caused by temperature field, 

centrifugal force, etc., the term oP/ox. can not be ignored. Since it 
~ 

will possess critical influence on sensitivities for such problems as 

thermo-stressed structural shape optimization. Besides, when boundary 

conditions are shape dependent, e.g. a boundary support is dependent 

upon boundary shape, and the oK/ax. is also related to the variation of 
~ 

boundary conditions. These shape dependent variations of load, 

temperature, boundary conditions, etc., can be computed effectively by 

semi-analytic method without complicated derivation and programming. 

Here, we give an example of the train's wheel which design model and 

mesh of axisymmetric elements have been shown in Fig.1 and 2. Its 

temperature field caused by braking is shown in Fig.3. We consider 

maximum thermal stresses arising at nodes 43, 49, 40, 63 and 60, and 

maximum radial displacement u3 4.' When boundary shape is changed by 

giving a perturbation llxi =1.0 to design variables in turn, we consider 

the influence of shape change on thermo-load as well as structural 

responses. Computed increments of thermal stresses and displacement are 

given in Table 1. The values on lines corresponding to DT and DNT are 

increments of thermal stresses and displacement. They are computed by 

reanalysis under new thermo-load modified with shape change and old 

thermo-load, respectively. The values on lines corresponding to ST and 

SNT are linear approximations of increments with first order 

sensitivities calculated by means of semi-analytic method with and 

withou t, respectively, consideration of thermo-load variation. 

The following conclusions can be drawn from numerical results: 

1. The variation of structural response with respect to shape change 

is caused by two facts, the mesh change and load change. 

2. The influence of thermo-load change caused by shape modification is 

significant for thermo-stressed structures, and therefore can not be 

ignored in sensitivity analysis and reanalysis. 

3. The semi-analytic method is accurate for shape sensitivity analysis 

of thermo-stressed structures composed of axisymmetric brick elements. 

4. The temperature field is less sensitive than thermal stress and 

displacement to structural shape change. Computational example will be 

mentioned in section 5. 
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Table 1. 

" " " " .6 .. 
Ini t ial value 91. 798 77.396 57.937 

~l=LO DT -0.2632 -2.3835 3.1606 
D.,-r -0.0656 -3.4452 4.3411 
ST -0.2585 -2.3837 3.2855 
SnT -0.0557 -3.4781 4.4698 

AXl =1.0 DT 1. 9073 0.9979 -2.1929 

DriT 4.1755 3.2377 -1.8452 
ST 1 .• 9502 1.2803 -2.1294 
SOT 4.3168 3.5599 -1.7286 

Ax 3 =l.O DT -2.2026 0.6814 -1.6457 
DOT -2.5066 1.7575 -2.0589 
ST -2.2272 0.7277 -1.6497 

S" -2.4057 1.9791 -1. 9676 

Ax,,=1.0 DT 0.6396 -0.2021 0.5147 
DOT -0.3343 -1.0171 "0.5444 
ST 0.6077 -0.2174 0.4914 
S~T -0.2497 -0.9394 -0 .0922 

Ax5=1.0 DT -0.1799 0.2709 -0.1843 

D" -0.1962 0.3844 -0.2079 
ST -0.-2426 0.2409 -0.2265 

S" -0.2518 0.3763 -0.2475 

6 x6=1.0 DT 0.5201 0.2407 0.3560 

D" 0.6530 0.4493 0.4189 
ST 0.5502 0.2620 0.3776 
S1fT 0.7578 0.5093 0.4967 

Ax;,: 1.0 DT -0.1855 -0.0393 -0.0777 
DOT -0.6439 -1.0526 -0.2356 
ST -0.1886 -0. 0839 -0.0669 

S" -0.6290 -1.1059 -0.1929 

11"8=1'°.Dr 0.6504 -0.3003 0.4226 
. ----DIfT- ~L.1.7JlL.~84J -0.7724 

ST 0.4964 -0.2892 0.3659 
Sft> -1.4497 -1.5121 -0.8095 

.\:19=1.0 DT -0.9210 -1.1121 0.5750 
Dn -0.9659 -0.6966 0;1555 
ST -0.9609 -1.0589 0.5683 

S'T -1.0569 -0.8364 0.1878 

4 x 10 =1.0 DT -0.9543 0.7400-0.7797 
On -0.5138 0.5015 -0.3662 
ST -0.9271 0.7588 -0.7794 
SOT -0.6257 0.5156 -0.3481 

" " 63 6. 

63.958 56.989 

-0.1363 -0.1154 
0.0614 -0.2565 

-0.1316 -0.1111 
0.0734 -0.2497 

-0.7598 -0.0329 
- 1. 5590 0.1503 
-0.7631 -0. 0006 
-1.5428 0.2053 

0.1865 0.7666 
2.4451 2.7149 
0.2352 0.7005 
2.5263 2.5871 

0.7164 0.6633 
3.3942 -1.8204 
0.9285 0.5664 
4.1579 -2.2200 

0.8399 -0.3611 
-3.6641 -2.3054 

0.4937 -0.8310 
-3.9478 -2.8654 

-3.1865 1.4938 
-9.6704 -0.2139 
-3.0853 1. 6495 
-12.527 0.2757 

I. 4 369 -3.1492 
O. 0336 -10.663 
I. 4164 -3.2214 
O. 0504 -10.847 

-0.0737 -0.2707 
1. 0069 -0.4058 

-0.0588 -0.3985 
1.0879 -0.4915 

-0.2496 -0.6696 
-0.1486 -0.2070 
-0.2480 -0.6806 
-0.1616 -0.2353 

0.0422 -0.0731 
0.1038 -0.0492 
0.0386 -0.0775 
0.0948 -0.0477 

--~-]~:~ 
LUE VAlLE 

~IO.ooo 

«11.000 

:W.Wl 

"".000 

Dl.Wl 

l«J.Wl 

l&.Wl 

JOO.Wl 

iiiO.lW 

10 22ll.Wl 

II IOO.llXJ 

12 I.UUl 

13 IOO,Wl 

I~ ro.1WJ 

15 :lJ.lLW 

U,. 
1.6937 

0.00023 
0.00059 
0.00011 
0.00060 

0.00614 
O. 00729 
O. 00608 
0.00730 

0.00556 
0.02764 
0.00520 
0.02785 

-0.00036 
0.04743 

-0.00003 
0.04750 

-0.00001 
0.04787 

-0. 00003 
0.04750 

0.00265 
0.05068 
0.00035 
0.04866 

0.00356 
-0.00837 
0.00143 

-0.01031 

-0.00103 
-0.00348 
-0.00135 
-0.00349 

-0.00309 
-0.00210 
-0.00338 
-0.00235 

-0.00081 
-0.00065 
-0.00087 
-0.00046 
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4. User's programming interface 

The Engineering design is usually a complicated process, and there are 

always some special problems in a design process can not be foreseen and 

expressed in an unified scheme. Thus, it is difficult for a commercial 

pacl{age of structural optimization to deal with such special problems 

with definite formulae in the stage of system design and programming. 

For instance, the shape modeling may be complicated for particular 

structures, and the relationships between the natural variables and the 

interpolation curves/surfaces varies greatly with various shaped 

boundaries. The calculation of changeable load, stiffness parameters and 

stress of components having a special shape of cross-section, and 

particular constraint functions, etc., are application-related 

requirements and can not be expressed in a definite forms. 

In order to make software MeADS flexible in practical application of 

engineering, a programming interface has been developed and opened to 

users. This interface is composed of some subroutines dealing with some 

specific application-related problems and a mechanism storing and 

accessing user defined data. These user opened subroutines are located 

in one module and designed weaJdy related to other subroutines. They are 

called in optimization processes to finish a definite job, but their 

detailed contents are independent to program. The user is permitted to 

rewrite the internal contents of these subroutines for particular 

application problems. The storage/access mechanism of user data is 

provided to process a group data defined and used for modification of 

these su broutines. Such an interface is application oriented and 

supports user's programming on the base of MeADS. 

By means of this interface technique, the design model can be extended 

easily by user himself via modifying user opened subroutines to meet 

specific requirements of practical applications. For example, shape 

optimization of turbine engine disk shown in section 5 is completed by 

programming only two subroutines of user's interface. One is used to 

determine the relationship between natural variables and control nodes 

of boundary curves, another is used to compute the vector of centrifugal 

forces changed with respect to structural shape. While all of other 

parts of MeADS need not be modified. There are some other subroutines 

user opened to deal with special requirements of structural 

optimization. 
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5. Application examples of shape optimization using MCADS 

Two practical application examples of MCADS for the shape optimization 

of thermo-stressed continuum structures, dealing with a coupling of 

stress field and temperature field, are presented in this section. 

Example 1. The shape optimization of train wheels. 

The problem has been mentioned in section 2 and 3. The load-bearing of 

each wheel of a new heavy train is designed to increase from 21 tone to 

25 tone and the radius of wheel is keep, then temperature caused by 

bralting increases with load-bearing. This thermo-load is main load case 

and produces concentration of thermal stress. The optimization objective 

is to reduce this concentration of thermal stress by means of shape 

modification of wheel cross-section. The design model, analysis model 

and temperature distribution of initial design are shown in Fig.1-3. The 

thermo-load variation with respect to shape changes has been considered 

in sensitivity analysis via semi-analytic method. The optimum design is 

obtained after 5 iterations of optimization, 1lnd the maximum thermal 

stress of wheel has been reduced from 91.8 to 67.9 under 25 tone 

load-bearing. This value is even lower than the maximum thermal stress 

77.6 of old design with 21 tone load-bearing. The distribution of 

thermal stress (Mises stress) of old design and optimal design under 25 

tone load-bearing are shown in Fig.4 and 5, respectively. 
~~-oiItOO1 
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The temperature field is assumed not change during shape optimization. 

Reanalysis of temperature field and thermal stress field have been 

carried out for optimal design to check its safety. The results show 

that the change of temperature field is much smaller than the change of 

thermal stress, and the maximum thermal stress induced by new 

temperature field is smaller than that induced by old temperature field. 

This means that the shape optimization of thermo-stressed structures 

with temperature unchanged field gives a safety design. 

Example 2. The shape optimization of turbine engine disk. 

The cross-section shape of a turbine engine disk is described with 

lines and arcs, and controlled directly by 25 geometric design 

parameters (L. H. R. A. B.) as shown in Fig.6. The 18 parameters of them l, 1., .1, 1., 1. 

are selected as design variables. The shape modeling and modification 

are carried out by a subroutine of user's programming interface. And the 

centrifugal forces computation are calculated in another user defined 

subroutine. The structure is modeled with 8-node axisymmetric brick 

elements shown in Fig. 7, and is subject to a thermo-load caused by high 

temperature and centrifugal forces caused by high-speed rotating. Both 

of two load cases are changeable and updated during optimization with 

structural shape modification. The numerical computation has also shown 

that the variations of thermo-load as well as centrifugal forces with 

respect to changes of boundary shape play an important role in the 

sensitivity analysis 
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,,' 

Fig.7 

Fig.6 

A bi-objective of the shape optimization is to reduce both weight and 

stress level of disk structure. Various design criteria on structural 

strength and usage life of disk with consideration of all facts of 

fatigue, fracture, creep and manufacture have been studied, and 

expressed in forms of stress constraints. Thus the structural design 

model is very close to the real state of turbine engine disk and meets 

requirements of the ENSIP (Engine Structural Integrity Program) of USA. 

A new decomposition algorithm of optimization has been proposed in 

solving this problem. The algorithm makes a decomposition in the space 

of design variable, i.e. divides design variables into several groups. 

The original optimization problem is reduced to some sub-problems with 

fewer variables. One sub-problem with only one group of chargeable 

variables is solved in each iteration. The group division of variables 

considers different influence of variables to the design and convenience 

of design and manufacture. The optimization procedure shows that this 

decomposition algorithm is useful to large-scale optimization problems. 

The result of optimum shape design is that the structural weight and 

maximum Mises stress of the turbine engine disk has been reduced 18.52% 

and 14.91% respectively. The boundary shapes and the distributions of 

Mises stress of original design and optimal design have been shown in 

Fig.8-9 and color photographs. 
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Fig.8 

Fig.9 
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